Performance optimisation of solid oxide electrolyser cell (SOEC) using response surface method (RSM) for thermal gradient reduction

被引:0
作者
Hasbi, Syafawati [1 ,2 ]
Amber, Ityona [1 ]
Hossain, Mamdud [1 ]
Saharudin, Mohd Shahneel [1 ]
机构
[1] Robert Gordon Univ, Sch Comp & Engn Technol, Aberdeen, Scotland
[2] Natl Def Univ Malaysia, Fac Engn, Dept Mech Engn, Kuala Lumpur, Malaysia
关键词
Solid oxide electrolyser cell; response surface methods; green hydrogen production; computational fluid dynamics; thermal gradient optimisation; TEMPERATURE STEAM ELECTROLYSIS; FUEL-CELL; OPERATING-CONDITIONS; MODEL; DESIGN; SYSTEM; GAS; CO2; 3D; SIMULATION;
D O I
10.1080/14786451.2025.2482837
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Solid Oxide Electrolyser Cell (SOEC) offers high-efficiency hydrogen production due to favourable thermodynamics and reaction kinetics at elevated temperatures. However, high operating temperatures increase energy consumption and thermal gradients, leading to material degradation and reduced durability. This study optimises SOEC operating conditions to minimise thermal gradients and enhance performance using numerical simulations and Response Surface Methodology (RSM). Key parameters examined include voltage (1.1-1.5 V), temperature (1073-1273 K), steam mass fraction (0.3-0.9), flow configurations, porosity, and charge transfer coefficients. Results show increasing voltage from 1.1 to 1.5 V raised current density from 0.75 A/cm(2) to 2.5 A/cm(2), while thermal gradients increased up to 15 K at higher temperatures. Counterflow configurations caused mid-cell hotspots, whereas parallel flow produced thermal gradient near the outlet. RSM optimisation identified optimal conditions of 1073, 1.5 V, and 0.9 steam mass fraction, reducing hotspot temperatures to 1086 K with minimal deviation. These findings support improved SOEC thermal management and hydrogen production efficiency.
引用
收藏
页数:33
相关论文
共 76 条
  • [1] Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance
    Aguiar, P
    Adjiman, CS
    Brandon, NP
    [J]. JOURNAL OF POWER SOURCES, 2004, 138 (1-2) : 120 - 136
  • [2] [Anonymous], 2012, ANSYS FLUENT Theory Guide
  • [3] Convergence criteria establishment for 3D simulation of proton exchange membrane fuel cell
    Arvay, A.
    Ahmed, A.
    Peng, X-H.
    Kannan, A. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) : 2482 - 2489
  • [4] A Design of Experiments (DOE) approach to optimise temperature measurement accuracy in Solid Oxide Fuel Cell (SOFC)
    Barari, F.
    Morgan, R.
    Barnard, P.
    [J]. 32ND UIT (ITALIAN UNION OF THERMO-FLUID-DYNAMICS) HEAT TRANSFER CONFERENCE, 2014, 547
  • [5] Steam as sweep gas in SOE oxygen electrode
    Barelli, L.
    Bidini, G.
    Cinti, G.
    [J]. JOURNAL OF ENERGY STORAGE, 2018, 20 : 190 - 195
  • [6] Experimental Design Step by Step: A Practical Guide for Beginners
    Benedetti, Barbara
    Caponigro, Vicky
    Ardini, Francisco
    [J]. CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2022, 52 (05) : 1015 - 1028
  • [7] Bockris J. O., 1972, Journal of The Electrochemical Society, V119, p136C, DOI [https://doi.org/10.1149/1.2404214, DOI 10.1149/1.2404214]
  • [8] Response surface methodology: A review on its applications and challenges in microbial cultures
    Breig, Sura Jasem Mohammed
    Luti, Khalid Jaber Kadhum
    [J]. MATERIALS TODAY-PROCEEDINGS, 2021, 42 : 2277 - 2284
  • [9] The Effects of Operating Conditions on the Performance of a Solid Oxide Steam Electrolyser: A Model-Based Study
    Cai, Q.
    Luna-Ortiz, E.
    Adjiman, C. S.
    Brandon, N. P.
    [J]. FUEL CELLS, 2010, 10 (06) : 1114 - 1128
  • [10] Parametric Study of Operating Conditions on Performances of a Solid Oxide Electrolysis Cell
    Chen, Hanming
    Wang, Jingyi
    Xu, Xinhai
    [J]. JOURNAL OF THERMAL SCIENCE, 2023, 32 (06) : 1973 - 1988