Auto feature weighted c-means type clustering methods for color image segmentation

被引:0
作者
Zhu, Sijia [1 ]
Liu, Zhe [2 ,3 ]
Letchmunan, Sukumar [3 ]
Qiu, Haoye [4 ]
机构
[1] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[2] Xinyu Univ, Coll Math & Comp, Xinyu 338004, Peoples R China
[3] Univ Sains Malaysia, Sch Comp Sci, Minden 11800, Malaysia
[4] Hainan Univ, Sch Comp Sci & Technol, Haikou 570228, Peoples R China
关键词
Hard c-means; Fuzzy c-means; Non-Euclidean norm; Vector-weighted; Matrix-weighted; Image segmentation; K-MEANS;
D O I
10.1016/j.engappai.2025.110768
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the limitations of existing hard c-means (HCM) and fuzzy c-means (FCM) methods, we develop four novel clustering methods: vector-weighted alternative hard c-means (VWAHCM), matrix-weighted alternative hard c-means (MWAHCM), vector-weighted alternative fuzzy c-means (VWAFCM), and matrix-weighted alternative fuzzy c-means (MWAFCM). These methods enhance clustering performance by incorporating nonEuclidean norm metrics and vector-weighted and matrix-weighted schemes without adding extra parameters. Our methods modify the traditional weight constraint from a sum to a product of weights, thereby improving robustness and accuracy. Comprehensive experiments conduct on various real-world datasets and color image segmentation tasks demonstrate the superiority of the proposed methods over traditional HCM and FCM variants. The results show significant improvements in clustering Accuracy (ACC), Normalized mutual information (NMI), Rand index (RI), and Fowlkes-Mallows index (FM). Furthermore, the proposed methods exhibit fast convergence and robust performance, proving their effectiveness in practical applications.
引用
收藏
页数:18
相关论文
共 60 条
[1]   Fuzzy C-Means clustering algorithm for data with unequal cluster sizes and contaminated with noise and outliers: Review and development [J].
Askari, Salar .
EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]   Clustering predicted structures at the scale of the known protein universe [J].
Barrio-Hernandez, Inigo ;
Yeo, Jingi ;
Janes, Jurgen ;
Mirdita, Milot ;
Gilchrist, Cameron L. M. ;
Wein, Tanita ;
Varadi, Mihaly ;
Velankar, Sameer ;
Beltrao, Pedro ;
Steinegger, Martin .
NATURE, 2023, 622 (7983) :637-+
[4]   Levy-Cauchy arithmetic optimization algorithm combined with rough K-means for image segmentation [J].
Das, Arunita ;
Namtirtha, Amrita ;
Dutta, Animesh .
APPLIED SOFT COMPUTING, 2023, 140
[5]   Clustering Propagation for Universal Medical Image Segmentation [J].
Ding, Yuhang ;
Li, Liulei ;
Wang, Wenguan ;
Yang, Yi .
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, :3357-3369
[6]   A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects [J].
Ezugwu, Absalom E. ;
Ikotun, Abiodun M. ;
Oyelade, Olaide O. ;
Abualigah, Laith ;
Agushaka, Jeffery O. ;
Eke, Christopher I. ;
Akinyelu, Andronicus A. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 110
[7]   Thermographic image processing analysis in a solar concentrator with hard C-means clustering [J].
Flores, Marco A. ;
Serrano, Fernando E. ;
Cadena, Carlos ;
Alvarez, Jose C. .
ENERGY REPORTS, 2023, 9 :312-321
[8]   Unsupervised learning of prototypes and attribute weights [J].
Frigui, H ;
Nasraoui, O .
PATTERN RECOGNITION, 2004, 37 (03) :567-581
[9]   Multilayer Network Community Detection: A Novel Multi-Objective Evolutionary Algorithm Based on Consensus Prior Information [J].
Gao, Chao ;
Yin, Ze ;
Wang, Zhen ;
Li, Xianghua ;
Li, Xuelong .
IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2023, 18 (02) :46-59
[10]   Pixel and region level information fusion in membership regularized fuzzy clustering for image segmentation [J].
Guo, Li ;
Shi, Pengfei ;
Chen, Long ;
Chen, Chenglizhao ;
Ding, Weiping .
INFORMATION FUSION, 2023, 92 :479-497