Characterizing Inkjet-Printed Localized n plus and p plus Poly-Si Passivating Contacts for Silicon Solar Cells: Comparisons and Insights

被引:0
作者
Wang, Jiali [1 ]
Truong, Thien [1 ,2 ]
Balendhran, Sivacarendran [4 ]
Ren, Jinlei [5 ]
Adier, Marie [5 ]
Creon, Laura [5 ]
Peres, Paula [5 ]
Chemnitzer, Rene [5 ]
Corre, Pierre-Yves [5 ]
Li, Zhuofeng [1 ]
Nguyen, Hieu T. [1 ]
Yan, Di [4 ]
Bullock, James [4 ]
Stuckelberger, Josua [1 ,3 ]
Macdonald, Daniel [1 ]
Liu, AnYao [1 ]
Phang, Sieu Pheng [1 ]
机构
[1] Australian Natl Univ, Sch Engn, Canberra, ACT 2600, Australia
[2] Natl Renewable Energy Lab, Golden, CO 80401 USA
[3] LAPLACE Renewable Energy Technol Co Ltd, Shenzhen 518100, Guangdong, Peoples R China
[4] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3010, Australia
[5] Cameca SA, F-92230 Gennevilliers, France
关键词
inkjet-printing; liquid doping; ex-situ doping; passivating contacts; TOPCon; POLYSILICON; TECHNOLOGY;
D O I
10.1021/acsami.5c05734
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, we fabricate and characterize localized boron- and phosphorus-doped polycrystalline silicon (poly-Si)/SiO x passivating contacts for silicon solar cells by maskless inkjet printing technology with commercially sourced liquid dopant inks. Moreover, we leverage the advantages of inkjet printing to demonstrate the simultaneous formation of localized p+ and n+ poly-Si/SiO x passivating contact lines by a single anneal at 950 degrees C for 60 min. Optical microscopy images reveal well-defined dopant lines with features down to similar to 60 mu m. Microphotoluminescence (mu PL) mapping confirms the enhanced surface passivation in the locally printed regions compared to the unprinted regions due to doping. In addition, high-resolution dynamic secondary ion mass spectrometry (SIMS) measurements quantify the total dopant concentrations in the lines, and electrochemical capacitance-voltage (ECV) was applied to measure the electrically active dopant concentrations in co-processed pads. The mu PL and SIMS maps clearly reflect the line shapes from optical microscopy images, and exhibit sharp line features, irrespective of line widths or dopant species. More importantly, SIMS analysis highlights unintended doping in unprinted regions and cross-doping when both polarities are co-annealed. Introducing a thick spin-on SiO x protective layer in unprinted regions effectively mitigates unintended doping. Comparison of the mu PL and SIMS maps suggests that the unintended doping arises from volatile dopant species released into the gas phase, rather than from the lateral diffusion of dopants. The benefits and limitations of the characterization methods are also discussed. These findings provide valuable insights for the further optimization of inkjet printing for localized doping of poly-Si/SiO x passivating contacts, particularly in interdigitated back contact solar cell architectures.
引用
收藏
页码:26823 / 26835
页数:13
相关论文
共 41 条
[1]  
[Anonymous], 2023, JINKOSOLARS HIGH EFF
[2]   Current status and challenges for hole-selective poly-silicon based passivating contacts [J].
Basnet, Rabin ;
Yan, Di ;
Kang, Di ;
Shehata, Mohamed M. ;
Phang, Pheng ;
Truong, Thien ;
Bullock, James ;
Shen, Heping ;
Macdonald, Daniel .
APPLIED PHYSICS REVIEWS, 2024, 11 (01)
[3]   Substrate-independent analysis of microcrystalline silicon thin films using UV Raman spectroscopy [J].
Carpenter, Joe V., III ;
Bailly, Mark ;
Boley, Allison ;
Shi, Jianwei ;
Minjares, Michael ;
Smith, David J. ;
Bowden, Stuart ;
Holman, Zachary C. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (09)
[4]   Self-Aligned Selective Area Front Contacts on Poly-Si/SiO$_x$ Passivating Contact c-Si Solar Cells [J].
Chen, Kejun ;
Hartweg, Barry ;
Woodhouse, Michael ;
Guthrey, Harvey ;
Nemeth, William ;
Theingi, San ;
Page, Matthew ;
Holman, Zachary C. ;
Stradins, Paul ;
Agarwal, Sumit ;
Young, David L. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2022, 12 (03) :678-689
[5]   Phosphorus-doped polycrystalline silicon passivating contacts via spin-on doping [J].
Ding, Zetao ;
Yan, Di ;
Stuckelberger, Josua ;
Phang, Sieu Pheng ;
Chen, Wenhao ;
Samundsett, Christian ;
Yang, Jie ;
Wang, Zhao ;
Zheng, Peiting ;
Zhang, Xinyu ;
Wan, Yimao ;
Macdonald, Daniel .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 221
[6]  
Fan W., 2009, 24 EUR PHOT SOL EN C
[7]   Studying dopant diffusion from Poly-Si passivating contacts [J].
Feldmann, Frank ;
Schoen, Jonas ;
Niess, Juergen ;
Lerch, Wilfried ;
Hermle, Martin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2019, 200
[8]   The application of poly-Si/SiOx contacts as passivated top/rear contacts in Si solar [J].
Feldmann, Frank ;
Reichel, Christian ;
Mueller, Ralph ;
Hermle, Martin .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 159 :265-271
[9]   Silicon-based passivating contacts: The TOPCon route [J].
Glunz, Stefan W. ;
Steinhauser, Bernd ;
Polzin, Jana-Isabelle ;
Luderer, Christoph ;
Gruebel, Benjamin ;
Niewelt, Tim ;
Okasha, Asmaa M. O. M. ;
Bories, Mathias ;
Nagel, Henning ;
Krieg, Katrin ;
Feldmann, Frank ;
Richter, Armin ;
Bivour, Martin ;
Hermle, Martin .
PROGRESS IN PHOTOVOLTAICS, 2023, 31 (04) :341-359
[10]   Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells [J].
Haase, Felix ;
Hollemann, Christina ;
Schaefer, Soeren ;
Merkle, Agnes ;
Rienaecker, Michael ;
Kruegener, Jan ;
Brendel, Rolf ;
Peibst, Robby .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 186 :184-193