Existence Results for Fractional Stochastic Evolution Equations with Infinite Delay on an Infinite Interval of Order ℓ∈(1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell \in (1,2)$$\end{document}Existence results for fractional stochastic evolution...K. Nandhaprasadh, R. Udhayakumar

被引:0
作者
K. Nandhaprasadh [1 ]
R. Udhayakumar [1 ]
机构
[1] Vellore Institute of Technology,Department of Mathematics, School of Advanced Sciences
关键词
Fractional stochastic evolution systems; Caputo derivative; Mild solution; Infinite interval; 26A33; 34A12; 37L05; 60G22;
D O I
10.1007/s11785-025-01707-5
中图分类号
学科分类号
摘要
In this study, we examine the existence of mild solutions for fractional stochastic evolution equations with infinite delay on an infinite interval. Our methodology is based on the measure of noncompactness, fractional calculus, semigroup theory, and stochastic analysis. Several sufficient conditions for the existence of solutions to the given problem are proposed. Finally, we propose an illustration to validate the findings.
引用
收藏
相关论文
empty
未找到相关数据