Oscillation inequalities for Carleson-Dunkl operator

被引:0
作者
Slomian, Wojciech [1 ]
机构
[1] Uniwersytet Wroclawski, Inst Matemat, Plac Grunwaldzki 2, PL-50384 Wroclaw, Poland
关键词
Oscillation seminorm; Dunkl transform; Radial functions; Partial sums; WEIGHTED NORM INEQUALITIES; SPHERICAL PARTIAL-SUMS; HANKEL; TRANSPLANTATION; CONVERGENCE; MULTIPLIERS; EVERYWHERE; TRANSFORM; FOURIER;
D O I
10.1007/s12215-025-01237-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish estimates for the oscillation seminorm for the so-called Carleson-Dunkl operator on weighted Lp(R,w(x)|x|2 alpha+1dx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p(\mathbb {R},w(x)|x|<^>{2\alpha +1}\textrm{d}x)$$\end{document} spaces with power weights w(x)=|x|beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(x)=|x|<^>\beta $$\end{document}. As a result, we obtain oscillation estimates for the standard Carleson operator on Lradp(Rn,|x|beta dx)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\textrm{rad}<^>p(\mathbb {R}<^>n,|x|<^>\beta \textrm{d}x)$$\end{document}. As a byproduct, we obtain a transference principle for radial multipliers on Lradp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L_\textrm{rad}<^>p$$\end{document} spaces, in the spirit of the Rubio de Francia transference principle.
引用
收藏
页数:18
相关论文
共 32 条
[1]   WEIGHTED INEQUALITIES FOR THE DISK MULTIPLIER [J].
ANDERSEN, KF .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 83 (02) :269-275
[2]  
ANDERSEN KF, 1980, STUD MATH, V69, P19
[3]   The multiplier of the interval [-1,1] for the Dunkl transform on the real line [J].
Betancor, Jorge J. ;
Ciaurri, Oscar ;
Varona, Juan L. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 242 (01) :327-336
[4]  
DEFRANCIA JLR, 1989, DUKE MATH J, V58, P1
[5]  
Di Plinio F, 2018, ANN SCUOLA NORM-SCI, V18, P1443
[6]  
DUNKL CF, 1992, CONT MATH, V138, P123
[7]  
El Kamel J., 2009, Tamsui Oxf. J. Math. Sci, V25, P259
[8]  
FEFFERMAN C, 1971, ANN MATH, V94, P331
[9]  
Grafakos L, 2014, GRAD TEXTS MATH, V250, DOI 10.1007/978-1-4939-1230-8
[10]   Weighted norm inequalities for maximally modulated singular integral operators [J].
Grafakos, L ;
Martell, JM ;
Soria, F .
MATHEMATISCHE ANNALEN, 2005, 331 (02) :359-394