In this paper, we establish estimates for the oscillation seminorm for the so-called Carleson–Dunkl operator on weighted Lp(R,w(x)|x|2α+1dx)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^p(\mathbb {R},w(x)|x|^{2\alpha +1}\textrm{d}x)$$\end{document} spaces with power weights w(x)=|x|β\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$w(x)=|x|^\beta $$\end{document}. As a result, we obtain oscillation estimates for the standard Carleson operator on Lradp(Rn,|x|βdx)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_\textrm{rad}^p(\mathbb {R}^n,|x|^\beta \textrm{d}x)$$\end{document}. As a byproduct, we obtain a transference principle for radial multipliers on Lradp\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_\textrm{rad}^p$$\end{document} spaces, in the spirit of the Rubio de Francia transference principle.