Let f be a holomorphic Hecke eigenform of even weight κ for the full modular group, and let L(s, f) be the associated automorphic L-function of f. We prove that ∫T2TL1/2+it,f2rdt≪fTlogTr2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\int }_{T}^{2T}{\left|L\left(1/2+\text{i}t,f\right)\right|}^{2r}\text{d}t{\ll }_{f}T{\left(\text{log}T\right)}^{{r}^{2}}$$\end{document} for 0≤r≤1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0\le r\le 1$$\end{document} unconditionally.