Quantum simulation of one-dimensional fermionic systems with Ising Hamiltonians

被引:0
作者
Werner, Matthias [1 ,2 ,3 ]
Garcia-Saez, Artur [1 ,4 ]
Estarellas, Marta P. [1 ]
机构
[1] Qilimanjaro Quantum Tech, Carrer Venecuela 74, Barcelona 08019, Spain
[2] Univ Barcelona UB, Dept Fis Quant & Astrofis FQA, Carrer Marti I Franques 1, Barcelona 08028, Spain
[3] Univ Barcelona, Inst Ciencies Cosmos, ICCUB, Carrer Marti i Franques 1, Barcelona 08028, Spain
[4] Barcelona Supercomp Ctr, Placa Eusebi Guell 1-3, Barcelona 08034, Spain
关键词
!text type='PYTHON']PYTHON[!/text] FRAMEWORK; DYNAMICS; QUTIP;
D O I
10.1103/PhysRevB.111.155441
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years, analog quantum simulators have reached unprecedented quality, both in qubit numbers and coherence times. Most of these simulators natively implement Ising-type Hamiltonians, which limits the class of models that can be simulated efficiently. We propose a method to overcome this limitation and simulate the time evolution of a large class of spinless fermionic systems in one dimension (1D) using simple Ising-type Hamiltonians with local transverse fields. Our method is based on domain wall encoding, which is implemented via strong (anti)ferromagnetic couplings |J|. We show that in the limit of strong |J|, the domain walls behave like spinless fermions in 1D. The Ising Hamiltonians are one-dimensional chains with nearest-neighbor and, optionally, next-nearest-neighbor interactions. As a proof of concept, we perform numerical simulations of various 1D fermionic systems using domain wall evolution and accurately reproduce the systems' properties, such as topological edge states, Anderson localization, quantum chaotic time evolution, and time-reversal symmetry breaking via Floquet engineering. Our approach makes the simulation of a large class of fermionic many-body systems feasible on analog quantum hardware that natively implements Ising-type Hamiltonians with transverse fields.
引用
收藏
页数:22
相关论文
共 60 条
  • [1] Quantum computing for quantum tunneling
    Abel, Steven
    Chancellor, Nicholas
    Spannowsky, Michael
    [J]. PHYSICAL REVIEW D, 2021, 103 (01)
  • [2] Simulations of many-body Fermi systems on a universal quantum computer
    Abrams, DS
    Lloyd, S
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (13) : 2586 - 2589
  • [3] Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
  • [4] Conductivity in a disordered one-dimensional system of interacting fermions
    Barisic, O. S.
    Prelovsek, P.
    [J]. PHYSICAL REVIEW B, 2010, 82 (16):
  • [5] Probing many-body dynamics on a 51-atom quantum simulator
    Bernien, Hannes
    Schwartz, Sylvain
    Keesling, Alexander
    Levine, Harry
    Omran, Ahmed
    Pichler, Hannes
    Choi, Soonwon
    Zibrov, Alexander S.
    Endres, Manuel
    Greiner, Markus
    Vuletic, Vladan
    Lukin, Mikhail D.
    [J]. NATURE, 2017, 551 (7682) : 579 - +
  • [6] Understanding domain-wall encoding theoretically and experimentally
    Berwald, Jesse
    Chancellor, Nicholas
    Dridi, Raouf
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2241):
  • [7] Topological excitations and bound photon pairs in a superconducting quantum metamaterial
    Besedin, Ilya S.
    Gorlach, Maxim A.
    Abramov, Nikolay N.
    Tsitsilin, Ivan
    Moskalenko, Ilya N.
    Dobronosova, Alina A.
    Moskalev, Dmitry O.
    Matanin, Alexey R.
    Smirnov, Nikita S.
    Rodionov, Ilya A.
    Poddubny, Alexander N.
    Ustinov, Alexey, V
    [J]. PHYSICAL REVIEW B, 2021, 103 (22)
  • [8] Fermionic quantum computation
    Bravyi, SB
    Kitaev, AY
    [J]. ANNALS OF PHYSICS, 2002, 298 (01) : 210 - 226
  • [9] Schrieffer-Wolff transformation for quantum many-body systems
    Bravyi, Sergey
    DiVincenzo, David P.
    Loss, Daniel
    [J]. ANNALS OF PHYSICS, 2011, 326 (10) : 2793 - 2826
  • [10] Digital-Analog Quantum Simulation of Fermionic Models
    Celeri, Lucas C.
    Huerga, Daniel
    Albarran-Arriagada, Francisco
    Solano, Enrique
    de Andoin, Mikel Garcia
    Sanz, Mikel
    [J]. PHYSICAL REVIEW APPLIED, 2023, 19 (06)