Spectral radii of arithmetical structures on cycle graphs

被引:0
作者
Diaz-Lopez, Alexander [1 ]
Haymaker, Kathryn [1 ]
Tait, Michael [1 ]
机构
[1] Villanova Univ, Dept Math & Stat, 800 Lancaster Ave SAC 305, Villanova, PA 19085 USA
基金
美国国家科学基金会;
关键词
Arithmetical structures; spectral radius; cycle graph; Laplacian; LAPLACIAN SPECTRUM; BOUNDS;
D O I
10.1080/03081087.2025.2489418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite, connected graph. An arithmetical structure on G is a pair of positive integer-valued vectors (d,r) such that (diag (d)-AG) . r=0, where the entries of r have gcd 1 and A(G) is the adjacency matrix of G. In this article, we find the arithmetical structures that maximize and minimize the spectral radius of (diag (d)-A(G)) among all arithmetical structures on the cycle graph C-n.
引用
收藏
页数:14
相关论文
共 31 条
[1]   Critical groups of arithmetical structures on star graphs and complete graphs [J].
Archer, Kassie ;
Diaz-Lopez, Alexander ;
Glass, Darren ;
Louwsma, Joel .
ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01) :1-28
[2]   Arithmetical structures on bidents [J].
Archer, Kassie ;
Bishop, Abigail C. ;
Diaz-Lopez, Alexander ;
Puente, Luis D. Garcia ;
Glass, Darren ;
Louwsma, Joel .
DISCRETE MATHEMATICS, 2020, 343 (07)
[3]   Counting arithmetical structures on paths and cycles [J].
Braun, Benjamin ;
Corrales, Hugo ;
Corry, Scott ;
Puente, Luis David Garcia ;
Glass, Darren ;
Kaplan, Nathan ;
Martin, Jeremy L. ;
Musiker, Gregg ;
Valencia, Carlos E. .
DISCRETE MATHEMATICS, 2018, 341 (10) :2949-2963
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]   A COMBINATORIAL PROOF OF THE ALL MINORS MATRIX TREE THEOREM [J].
CHAIKEN, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (03) :319-329
[6]  
Chen WK., 1976, Graphs and electrical networks, V13
[7]   Arithmetical structures on graphs with connectivity one [J].
Corrales, Hugo ;
Valencia, Carlos E. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (08)
[8]   Arithmetical structures on graphs [J].
Corrales, Hugo ;
Valencia, Carlos E. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 536 :120-151
[9]   The Laplacian spectrum of a graph [J].
Das, KC .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) :715-724
[10]  
FIEDLER M, 1973, CZECH MATH J, V23, P298