Structural knowledge: from brain to artificial intelligence

被引:1
作者
Yu, Yingchao [1 ]
Yan, Yuping [2 ]
Jin, Yaochu [1 ,2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, 2999 Renmin North Rd, Shanghai 201620, Peoples R China
[2] Westlake Univ, Sch Engn, 600 Dunyu Rd, Hangzhou 310030, Zhejiang, Peoples R China
关键词
Structural knowledge; Cognitive maps; Schemas; Artificial intelligence; DIFFERENTIAL ROLES; COGNITIVE MAPS; PLACE CELLS; MEMORY; SCHEMA; HIPPOCAMPUS; REPRESENTATION; NAVIGATION; INFORMATION; INTEGRATION;
D O I
10.1007/s10462-025-11270-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Organisms rely on structural knowledge derived from dynamic memory processes to adapt to the external world, employing cognitive maps and schemas. Similarly, artificial intelligence (AI) systems either explicitly or implicitly learn and utilize structural knowledge. Skillful utilization of this structural knowledge not only enhances the performance of AI models but also improves their transferability, generalization, and interpretability, crucial for developing robust and reliable AI systems. The importance of integrating insights from brain-based structural knowledge into AI systems cannot be overestimated. In this survey, we review research on structural knowledge in the brain, focusing on cognitive maps and schemas. We then examine computational models, highlighting potential mechanisms that serve as a bridge to AI. Finally, we provide an overview of AI models that leverage both brain-inspired and traditional structural knowledge and discuss how biological mechanisms can be applied to enhance AI systems. This survey aims to deepen the understanding of how structural knowledge in the brain can be constructed and utilized in AI, thereby bridging the gap between natural intelligence and artificial intelligence.
引用
收藏
页数:39
相关论文
共 169 条
[1]   Risk of Training Diagnostic Algorithms on Data with Demographic Bias [J].
Abbasi-Sureshjani, Samaneh ;
Raumanns, Ralf ;
Michels, Britt E. J. ;
Schouten, Gerard ;
Cheplygina, Veronika .
INTERPRETABLE AND ANNOTATION-EFFICIENT LEARNING FOR MEDICAL IMAGE COMPUTING, IMIMIC 2020, MIL3ID 2020, LABELS 2020, 2020, 12446 :183-192
[2]   A Survey on Homomorphic Encryption Schemes: Theory and Implementation [J].
Acar, Abbas ;
Aksu, Hidayet ;
Uluagac, A. Selcuk ;
Conti, Mauro .
ACM COMPUTING SURVEYS, 2018, 51 (04)
[3]  
Adekoya H.O., 2013, Journal of Research and Development, V1, P1
[4]  
Alirezaie M, 2024, P AAAI
[5]   Place cells in the hippocampus: Eleven maps for eleven rooms [J].
Alme, Charlotte B. ;
Miao, Chenglin ;
Jezek, Karel ;
Treves, Alessandro ;
Moser, Edvard I. ;
Moser, May-Britt .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (52) :18428-18435
[6]   Schemas provide a scaffold for neocortical integration of new memories over time [J].
Audrain, Sam ;
McAndrews, Mary Pat .
NATURE COMMUNICATIONS, 2022, 13 (01)
[7]  
Baek J, 2023, Arxiv, DOI arXiv:2306.04136
[8]   A Review of Brain-Inspired Cognition and Navigation Technology for Mobile Robots [J].
Bai, Yanan ;
Shao, Shiliang ;
Zhang, Jin ;
Zhao, Xianzhe ;
Fang, Chuxi ;
Wang, Ting ;
Wang, Yongliang ;
Zhao, Hai .
CYBORG AND BIONIC SYSTEMS, 2024, 5
[9]  
Bakermans JJW, 2024, bioRxiv, DOI [10.1101/2023.04.07.536053, 10.1101/2023.04.07.536053, DOI 10.1101/2023.04.07.536053]
[10]   Vector-based navigation using grid-like representations in artificial agents [J].
Banino, Andrea ;
Barry, Caswell ;
Uria, Benigno ;
Blundell, Charles ;
Lillicrap, Timothy ;
Mirowski, Piotr ;
Pritzel, Alexander ;
Chadwick, Martin J. ;
Degris, Thomas ;
Modayil, Joseph ;
Wayne, Greg ;
Soyer, Hubert ;
Viola, Fabio ;
Zhang, Brian ;
Goroshin, Ross ;
Rabinowitz, Neil ;
Pascanu, Razvan ;
Beattie, Charlie ;
Petersen, Stig ;
Sadik, Amir ;
Gaffney, Stephen ;
King, Helen ;
Kavukcuoglu, Koray ;
Hassabis, Demis ;
Hadsell, Raia ;
Kumaran, Dharshan .
NATURE, 2018, 557 (7705) :429-+