Task Offloading and Data Compression Collaboration Optimization for UAV Swarm-Enabled Mobile Edge Computing

被引:0
作者
Hu, Zhijuan [1 ]
Liu, Shuangyu [1 ]
Zhou, Dongsheng [1 ]
Shen, Chao [1 ]
Wang, Tingting [2 ]
机构
[1] Xian Technol Univ, Sch Comp Sci & Engn, Xian 710021, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
UAV swarm; mobile edge computing; computational offloading; data compression; deep reinforcement learning; RESOURCE-ALLOCATION; NETWORKS;
D O I
10.3390/drones9040288
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The combination of Unmanned Aerial Vehicles (UAVs) and Mobile Edge Computing (MEC) effectively meets the demands of user equipments (UEs) for high-quality computing services, low energy consumption, and low latency. However, in complex environments such as disaster rescue scenarios, a single UAV is still constrained by limited transmission power and computing resources, making it difficult to efficiently complete computational tasks. To address this issue, we propose a UAV swarm-enabled MEC system that integrates data compression technology, in which the only swarm head UAV (USH) offloads the compressed computing tasks compressed by the UEs and partially distributes them to the swarm member UAV (USM) for collaborative processing. To minimize the total energy and time cost of the system, we utilize Markov Decision Process (MDP) for modeling and construct a deep deterministic policy gradient offloading algorithm with a prioritized experience replay mechanism (PER-DDPG) to jointly optimize compression ratio, task offloading rate, resource allocation and swarm positioning. Simulation results show that compared with deep Q-network (DQN) and deep deterministic policy gradient (DDPG) baseline algorithms, the proposed scheme performs excellently in terms of convergence and robustness, reducing system latency and energy consumption by about 32.7%.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A Greedy Algorithm for Task Offloading in Mobile Edge Computing System
    Wei, Feng
    Chen, Sixuan
    Zou, Weixia
    CHINA COMMUNICATIONS, 2018, 15 (11) : 149 - 157
  • [42] Task Offloading Optimization in Mobile Edge Computing based on Deep Reinforcement Learning
    Silva, Carlos
    Magaia, Naercio
    Grilo, Antonio
    PROCEEDINGS OF THE INT'L ACM CONFERENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MOBILE SYSTEMS, MSWIM 2023, 2023, : 109 - 118
  • [43] Joint Task Offloading and Data Caching in Mobile Edge Computing
    Zhang, Ni
    Guo, Songtao
    Dong, Yifan
    Jiang, Qiucen
    Jiao, Jiao
    2019 15TH INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SENSOR NETWORKS (MSN 2019), 2019, : 234 - 239
  • [44] Computation Offloading in UAV-Enabled Edge Computing: A Stackelberg Game Approach
    Yuan, Xinwang
    Xie, Zhidong
    Tan, Xin
    SENSORS, 2022, 22 (10)
  • [45] Optimization of lightweight task offloading strategy for mobile edge computing based on deep reinforcement learning
    Lu, Haifeng
    Gu, Chunhua
    Luo, Fei
    Ding, Weichao
    Liu, Xinping
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 102 : 847 - 861
  • [46] Task offloading and resource allocation for blockchain-enabled mobile edge computing
    Fang, Renbin
    Lin, Peng
    Liu, Yize
    Liu, Yan
    IET COMMUNICATIONS, 2024, 18 (20) : 1889 - 1899
  • [47] A Deep Learning Approach for Task Offloading in Multi-UAV Aided Mobile Edge Computing
    Ebrahim, Moshira A.
    Ebrahim, Gamal A.
    Mohamed, Hoda K.
    Abdellatif, Sameh O.
    IEEE ACCESS, 2022, 10 : 101716 - 101731
  • [48] Multi-Agent Deep Reinforcement Learning for Task Offloading in UAV-Assisted Mobile Edge Computing
    Zhao, Nan
    Ye, Zhiyang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6949 - 6960
  • [49] Delay-Optimal Task Offloading for UAV-Enabled Edge-Cloud Computing Systems
    Almutairi, Jaber
    Aldossary, Mohammad
    Alharbi, Hatem A.
    Yosuf, Barzan A.
    Elmirghani, Jaafar M. H.
    IEEE ACCESS, 2022, 10 : 51575 - 51586
  • [50] Cooperative computation offloading combined with data compression in mobile edge computing system
    Hongjian Li
    Dongjun Li
    Xue Zhang
    Hu Sun
    The Journal of Supercomputing, 2023, 79 : 13490 - 13518