A NOTE ON THE INCOMPATIBILITY OF AUTONOMOUS FRACTIONAL DIFFERENTIAL SYSTEMS AND FRACTIONAL DERIVATIVES WITH NON-SINGULAR KERNELS

被引:0
作者
Douaifia, Redouane [1 ,2 ]
Alharthi, Mathkar [3 ]
Bendoukha, Samir [4 ]
Abdelmalek, Salem [5 ,6 ]
Ali, Emad [7 ]
Barhoumi, Nabil [4 ,8 ]
机构
[1] Univ Blida 1, Fac Technol, Proc Engn Dept, Blida 09000, Algeria
[2] Univ Blida 1, Fac Technol, Lab Water Environm & Sustainable Dev, Blida 09000, Algeria
[3] Taibah Univ, Coll Engn Yanbu, Dept Chem Engn, Yanbu 46477, Saudi Arabia
[4] Taibah Univ, Coll Engn Yanbu, Dept Elect Engn, Yanbu 46477, Saudi Arabia
[5] Echahid Cheikh Larbi Tebessi Univ, Dept Math, Tebessa 12022, Algeria
[6] Echahid Cheikh Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa 12022, Algeria
[7] King Saud Univ, Chem Engn Dept, POB 800, Riyadh 11421, Saudi Arabia
[8] Univ Monastir, Ecole Natl Ingenieurs Monastir, LAS2E, Monastir 5019, Tunisia
关键词
Autonomous Fractional Systems; Fractional Derivative; Atangana-Baleanu-Caputo; Caputo-Fabrizio; Non-singular Kernels; MATHEMATICAL-ANALYSIS; SMOKING MODEL; RC CIRCUIT; DYNAMICS; TRANSMISSION; SIMULATION; INFECTION;
D O I
10.1142/S0218348X25401644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses a critical oversight in the modeling of autonomous fractional differential systems using fractional derivatives with non-singular kernels such as the Caputo-Fabrizio (CF) and Atangana-Baleanu-Caputo (ABC) derivatives. We demonstrate that for such systems to be well defined, the initial condition must be an equilibrium point, which significantly limits the practical applicability of these models, a fact often overlooked in existing studies, leading to incorrect conclusions.
引用
收藏
页数:12
相关论文
共 72 条
  • [31] Modeling the dynamics of nutrient-phytoplankton-zooplankton system with variable-order fractional derivatives
    Ghanbari, Behzad
    Gomez-Aguilar, J. F.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 114 - 120
  • [32] Gorenflo R., 2014, Mittag Leffler Functions, Related Topics and Applications, DOI DOI 10.1007/978-3-662-43930-2
  • [33] A peculiar application of Atangana-Baleanu fractional derivative in neuroscience: Chaotic burst dynamics
    Goufo, Emile F. Doungmo
    Mbehou, Mohamed
    Pene, Morgan M. Kamga
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 115 : 170 - 176
  • [34] SEIRS epidemic model with Caputo-Fabrizio fractional derivative and time delay: dynamical analysis and simulation
    Hikal, M. M.
    Atteya, T. E. M.
    Hemeda, Hamed M.
    Zahra, W. K.
    [J]. RICERCHE DI MATEMATICA, 2024, 73 (02) : 1085 - 1119
  • [35] FRACTIONAL DYNAMICS OF CHRONIC LYMPHOCYTIC LEUKEMIA WITH THE EFFECT OF CHEMOIMMUNOTHERAPY TREATMENT
    Jan, Rashid
    Razak, Normy norfiza abdul
    Alyobi, Sultan
    Khan, Zaryab
    Hosseini, Kamyar
    Park, Choonkil
    Salahshour, Soheil
    Paokanta, Siriluk
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [36] Fractional-calculus analysis of the dynamics of typhoid fever with the effect of vaccination and carriers
    Jan, Rashid
    Boulaaras, Salah
    Alnegga, Mohammad
    Abdullah, Farah Aini
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2024, 37 (02)
  • [37] Modeling the transmission of dengue infection through fractional derivatives
    Jan, Rashid
    Khan, Muhammad Altaf
    Kumam, Poom
    Thounthong, Phatiphat
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 127 : 189 - 216
  • [38] Stability analysis of a non-singular fractional-order covid-19 model with nonlinear incidence and treatment rate
    Joshi, Hardik
    Yavuz, Mehmet
    Townley, Stuart
    Jha, Brajesh Kumar
    [J]. PHYSICA SCRIPTA, 2023, 98 (04)
  • [39] Kanth A. R., 2023, P 2023 INT C FRACT D, P1
  • [40] A robust study on 2019-nCOV outbreaks through non-singular derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Kumar, Sunil
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (02)