A NOTE ON THE INCOMPATIBILITY OF AUTONOMOUS FRACTIONAL DIFFERENTIAL SYSTEMS AND FRACTIONAL DERIVATIVES WITH NON-SINGULAR KERNELS

被引:0
作者
Douaifia, Redouane [1 ,2 ]
Alharthi, Mathkar [3 ]
Bendoukha, Samir [4 ]
Abdelmalek, Salem [5 ,6 ]
Ali, Emad [7 ]
Barhoumi, Nabil [4 ,8 ]
机构
[1] Univ Blida 1, Fac Technol, Proc Engn Dept, Blida 09000, Algeria
[2] Univ Blida 1, Fac Technol, Lab Water Environm & Sustainable Dev, Blida 09000, Algeria
[3] Taibah Univ, Coll Engn Yanbu, Dept Chem Engn, Yanbu 46477, Saudi Arabia
[4] Taibah Univ, Coll Engn Yanbu, Dept Elect Engn, Yanbu 46477, Saudi Arabia
[5] Echahid Cheikh Larbi Tebessi Univ, Dept Math, Tebessa 12022, Algeria
[6] Echahid Cheikh Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa 12022, Algeria
[7] King Saud Univ, Chem Engn Dept, POB 800, Riyadh 11421, Saudi Arabia
[8] Univ Monastir, Ecole Natl Ingenieurs Monastir, LAS2E, Monastir 5019, Tunisia
关键词
Autonomous Fractional Systems; Fractional Derivative; Atangana-Baleanu-Caputo; Caputo-Fabrizio; Non-singular Kernels; MATHEMATICAL-ANALYSIS; SMOKING MODEL; RC CIRCUIT; DYNAMICS; TRANSMISSION; SIMULATION; INFECTION;
D O I
10.1142/S0218348X25401644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses a critical oversight in the modeling of autonomous fractional differential systems using fractional derivatives with non-singular kernels such as the Caputo-Fabrizio (CF) and Atangana-Baleanu-Caputo (ABC) derivatives. We demonstrate that for such systems to be well defined, the initial condition must be an equilibrium point, which significantly limits the practical applicability of these models, a fact often overlooked in existing studies, leading to incorrect conclusions.
引用
收藏
页数:12
相关论文
共 72 条
  • [21] Fractional synchronization involving fractional derivatives with nonsingular kernels: Application to chaotic systems
    Coronel-Escamilla, A.
    Gomez-Aguilar, J. F.
    Torres-Jimenez, J.
    Mousa, A. A.
    Elagan, S. K.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 7987 - 8003
  • [22] WHY FRACTIONAL DERIVATIVES WITH NONSINGULAR KERNELS SHOULD NOT BE USED
    Diethelm, Kai
    Garrappa, Roberto
    Giusti, Andrea
    Stynes, Martin
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2020, 23 (03) : 610 - 634
  • [23] A fractional order model for Ebola Virus with the new Caputo fractional derivative without singular kernel
    Dokuyucu, Mustafa Ali
    Dutta, Hemen
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 134
  • [24] Cancer treatment model with the Caputo-Fabrizio fractional derivative
    Dokuyucu, Mustafa Ali
    Celik, Ercan
    Bulut, Hasan
    Baskonus, Haci Mehmet
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (03):
  • [25] Evirgen F., 2023, Math. Model. Numer. Simul. Appl., V3, P58, DOI [10.53391/mmnsa.1274004, DOI 10.53391/MMNSA.1274004]
  • [26] System Analysis of HIV Infection Model with CD4+T under Non-Singular Kernel Derivative
    Evirgen, Firat
    Ucar, Sumeyra
    Ozdemir, Necati
    [J]. APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (01) : 139 - 146
  • [27] SYSTEM RESPONSE OF AN ALCOHOLISM MODEL UNDER THE EFFECT OF IMMIGRATION VIA NON-SINGULAR KERNEL DERIVATIVE
    Evirgen, Firat
    Ucar, Sumeyra
    Ozdemir, Necati
    Hammouch, Zakia
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (07): : 2199 - 2212
  • [28] New numerical simulations for some real world problems with Atangana-Baleanu fractional derivative
    Gao, Wei
    Ghanbari, Behzad
    Baskonus, Haci Mehmet
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 128 : 34 - 43
  • [29] A new model for investigating the transmission of infectious diseases in a prey-predator system using a non-singular fractional derivative
    Ghanbari, Behzad
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (07) : 8106 - 8125
  • [30] A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative
    Ghanbari, Behzad
    Kumar, Sunil
    Kumar, Ranbir
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 133