A NOTE ON THE INCOMPATIBILITY OF AUTONOMOUS FRACTIONAL DIFFERENTIAL SYSTEMS AND FRACTIONAL DERIVATIVES WITH NON-SINGULAR KERNELS

被引:0
作者
Douaifia, Redouane [1 ,2 ]
Alharthi, Mathkar [3 ]
Bendoukha, Samir [4 ]
Abdelmalek, Salem [5 ,6 ]
Ali, Emad [7 ]
Barhoumi, Nabil [4 ,8 ]
机构
[1] Univ Blida 1, Fac Technol, Proc Engn Dept, Blida 09000, Algeria
[2] Univ Blida 1, Fac Technol, Lab Water Environm & Sustainable Dev, Blida 09000, Algeria
[3] Taibah Univ, Coll Engn Yanbu, Dept Chem Engn, Yanbu 46477, Saudi Arabia
[4] Taibah Univ, Coll Engn Yanbu, Dept Elect Engn, Yanbu 46477, Saudi Arabia
[5] Echahid Cheikh Larbi Tebessi Univ, Dept Math, Tebessa 12022, Algeria
[6] Echahid Cheikh Larbi Tebessi Univ, Lab Math Informat & Syst LAMIS, Tebessa 12022, Algeria
[7] King Saud Univ, Chem Engn Dept, POB 800, Riyadh 11421, Saudi Arabia
[8] Univ Monastir, Ecole Natl Ingenieurs Monastir, LAS2E, Monastir 5019, Tunisia
关键词
Autonomous Fractional Systems; Fractional Derivative; Atangana-Baleanu-Caputo; Caputo-Fabrizio; Non-singular Kernels; MATHEMATICAL-ANALYSIS; SMOKING MODEL; RC CIRCUIT; DYNAMICS; TRANSMISSION; SIMULATION; INFECTION;
D O I
10.1142/S0218348X25401644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper addresses a critical oversight in the modeling of autonomous fractional differential systems using fractional derivatives with non-singular kernels such as the Caputo-Fabrizio (CF) and Atangana-Baleanu-Caputo (ABC) derivatives. We demonstrate that for such systems to be well defined, the initial condition must be an equilibrium point, which significantly limits the practical applicability of these models, a fact often overlooked in existing studies, leading to incorrect conclusions.
引用
收藏
页数:12
相关论文
共 72 条
  • [1] Ahmad S., 2022, Math. Model. Numer. Simul. Appl., V2, P228
  • [2] Modelling immune systems based on Atangana-Baleanu fractional derivative
    Al-khedhairi, A.
    Elsadany, A. A.
    Elsonbaty, A.
    [J]. CHAOS SOLITONS & FRACTALS, 2019, 129 : 25 - 39
  • [3] Al-Refai M, 2018, ELECTRON J DIFFER EQ
  • [4] Aljhani S., 2022, Math. Methods Appl. Sci., V48, P7378
  • [5] Fractional model of Ebola virus in population of bats in frame of Atangana-Baleanu fractional derivative
    Almuqrin, M. A.
    Goswami, P.
    Sharma, S.
    Khan, I.
    Dubey, R. S.
    Khan, A.
    [J]. RESULTS IN PHYSICS, 2021, 26
  • [6] Mathematical study of the dynamics of lymphatic filariasis infection via fractional-calculus
    Alshehri, Ahmed
    Shah, Zahir
    Jan, Rashid
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03)
  • [7] Modeling the dynamics of Hepatitis E with optimal control
    Alzahrani, E. O.
    Khan, M. A.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 287 - 301
  • [8] Stability and Lyapunov functions for systems with Atangana-Baleanu Caputo derivative: An HIV/AIDS epidemic model
    Antonio Taneco-Hernandez, Marco
    Vargas-De-Leon, Cruz
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 132
  • [9] Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order
    Atangana, Abdon
    Koca, Ilknur
    [J]. CHAOS SOLITONS & FRACTALS, 2016, 89 : 447 - 454
  • [10] NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model
    Atangana, Abdon
    Baleanu, Dumitru
    [J]. THERMAL SCIENCE, 2016, 20 (02): : 763 - 769