Boros integral involving the class of polynomials and incomplete ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}-functions

被引:0
作者
Dinesh Kumar [1 ]
Frédéric Ayant [2 ]
D. L. Suthar [3 ]
Poonam Nirwan [4 ]
Mina Kumari [5 ]
机构
[1] Agriculture University Jodhpur,Department of Applied Sciences, College of Agriculture
[2] Allée des Nymphéas,Jodhpur
[3] Department: VAR,Collége Jean L’herminier
[4] Wollo University,Department of Mathematics
[5] K.R. Mangalam University,Department of Mathematics, School of Basic and Applied Science
来源
Proceedings of the Indian National Science Academy | 2025年 / 91卷 / 1期
关键词
Incomplete Gamma function; Mellin-Barnes integrals contour; Incomplete ; -function; Class of polynomials; Boros integral; 33C05; 33C60;
D O I
10.1007/s43538-024-00295-w
中图分类号
学科分类号
摘要
In this paper, we explore the Boros integral with three parameters containing the incomplete ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}- functions and Srivastava polynomial (genaral class of polynomial). We build the Boros integral for the product of Srivastava polynomials and the incomplete ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}-function. Also, We mentioned numerous specific instances of our main finding. For extending our given result one can generalize these formulas by using the classes of multivariable polynomials.
引用
收藏
页码:325 / 332
页数:7
相关论文
empty
未找到相关数据