3D-printed bioceramic scaffolds for bone defect repair: bone aging and immune regulation

被引:0
作者
Qi, Haoran [1 ]
Zhang, Bo [1 ]
Lian, Feng [1 ,2 ]
机构
[1] Harbin Med Univ, Affiliated Hosp 4, Dept Orthopaed Surg, Harbin, Heilongjiang, Peoples R China
[2] USTC, Affiliated Hosp 1, Ctr Leading Med & Adv Technol IHM, Hefei, Anhui, Peoples R China
关键词
3D printing; bioceramic scaffolds; immune microenvironment; bone aging; osteoporotic bone defects; MACROPHAGE POLARIZATION; REGENERATION;
D O I
10.3389/fbioe.2025.1557203
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The management of bone defects, particularly in aging populations, remains a major clinical challenge. The immune microenvironment plays an important role in the repair of bone defects and a favorable immune environment can effectively promote the repair of bone defects. However, aging is closely associated with chronic low-grade systemic inflammation, which adversely affects bone healing. Persistent low-grade systemic inflammation critically regulates bone repair through all stages. This review explores the potential of 3D-printed bioceramic scaffolds in bone defect repair, focusing on their capacity to modulate the immune microenvironment and counteract the effects of bone aging. The scaffolds not only provide structural support for bone regeneration but also serve as effective carriers for anti-osteoporosis drugs, offering a novel therapeutic strategy for treating osteoporotic bone defects. By regulating inflammation and improving the immune response, 3D-printed bioceramic scaffolds may significantly enhance bone repair, particularly in the context of age-related bone degeneration. This approach underscores the potential of advanced biomaterials in addressing the dual challenges of bone aging and immune dysregulation, offering promising avenues for the development of effective treatments for bone defects in the elderly. We hope the concepts discussed in this review could offer novel therapeutic strategies for bone defect repair, and suggest promising avenues for the future development and optimization of bioceramic scaffolds.
引用
收藏
页数:14
相关论文
共 101 条
[1]   Use of 3D-printed polylactic acid/bioceramic composite scaffolds for bone tissue engineering in preclinical in vivo studies: A systematic review [J].
Alonso-Fernandez, Ivan ;
Haugen, Havard Jostein ;
Lopez-Pena, Monica ;
Gonzalez-Cantalapiedra, Antonio ;
Munoz, Fernando .
ACTA BIOMATERIALIA, 2023, 168 :1-21
[2]   3D Printed Poly(ε-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties [J].
Biscaia, Sara ;
Branquinho, Mariana, V ;
Alvites, Rui D. ;
Fonseca, Rita ;
Sousa, Ana Catarina ;
Pedrosa, Silvia Santos ;
Caseiro, Ana R. ;
Guedes, Fernando ;
Patricio, Tatiana ;
Viana, Tania ;
Mateus, Artur ;
Mauricio, Ana C. ;
Alves, Nuno .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)
[3]   Mechanics Predicts Effective Critical-Size Bone Regeneration Using 3D-Printed Bioceramic Scaffolds [J].
Blazquez-Carmona, Pablo ;
Mora-Macias, Juan ;
Martinez-Vazquez, Francisco J. ;
Morgaz, Juan ;
Dominguez, Jaime ;
Reina-Romo, Esther .
TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2023, 20 (06) :893-904
[4]   Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration [J].
Burger, Maximilian G. ;
Grosso, Andrea ;
Briquez, Priscilla S. ;
Born, Gordian M. E. ;
Lunger, Alexander ;
Schrenk, Flavio ;
Todorov, Atanas ;
Sacchi, Veronica ;
Hubbell, Jeffrey A. ;
Schaefer, Dirk J. ;
Banfi, Andrea ;
Di Maggio, Nunzia .
ACTA BIOMATERIALIA, 2022, 149 :111-125
[5]   3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation [J].
Cao, Yuxue ;
Xiao, Lan ;
Cao, Yanfan ;
Nanda, Ashwin ;
Xu, Chun ;
Ye, Qingsong .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 512 (04) :889-895
[6]   Silicon substituted hydroxyapatite/VEGF scaffolds stimulate bone regeneration in osteoporotic sheep [J].
Casarrubios, L. ;
Gomez-Cerezo, N. ;
Sanchez-Salcedo, S. ;
Feito, M. J. ;
Serrano, M. C. ;
Saiz-Pardo, M. ;
Ortega, L. ;
de Pablo, D. ;
Diaz-Guemes, I. ;
Fernandez-Tome, B. ;
Enciso, S. ;
Sanchez-Margallo, F. M. ;
Portoles, M. T. ;
Arcos, D. ;
Vallet-Regi, M. .
ACTA BIOMATERIALIA, 2020, 101 :544-553
[7]   EDTA-Modified 17β-Estradiol-Laden Upconversion Nanocomposite for Bone-Targeted Hormone Replacement Therapy for Osteoporosis [J].
Chen, Xiaoting ;
Zhu, Xingjun ;
Hu, Yan ;
Yuan, Wei ;
Qiu, Xiaochen ;
Jiang, Tianyuan ;
Xia, Chao ;
Xiong, Liqin ;
Li, Fuyou ;
Gao, Yanhong .
THERANOSTICS, 2020, 10 (07) :3281-3292
[8]   Mitochondria and Metabolic Homeostasis [J].
Cheng, Zhiyong ;
Ristow, Michael .
ANTIOXIDANTS & REDOX SIGNALING, 2013, 19 (03) :240-242
[9]   Three-Dimensional-Printed Composite Scaffolds Containing Poly-ε-Caprolactone and Strontium-Doped Hydroxyapatite for Osteoporotic Bone Restoration [J].
Codrea, Cosmin Iulian ;
Lincu, Daniel ;
Ene, Vladimir Lucian ;
Nicoara, Adrian Ionut ;
Stan, Miruna Silvia ;
Ficai, Denisa ;
Ficai, Anton .
POLYMERS, 2024, 16 (11)
[10]   Bone-Targeted Biomimetic Nanogels Re-Establish Osteoblast/Osteoclast Balance to Treat Postmenopausal Osteoporosis [J].
Cui, Yongzhi ;
Lv, Bin ;
Li, Zhongying ;
Ma, Chunming ;
Gui, Zhengwei ;
Geng, Yongtao ;
Liu, Guohui ;
Sang, Linchao ;
Xu, Chen ;
Min, Qi ;
Kong, Li ;
Zhang, Zhiping ;
Liu, Yang ;
Qi, Xiangbei ;
Fu, Dehao .
SMALL, 2024, 20 (06)