The boundary effect of QGP droplets and the self-similarity effect of hadrons on QGP-hadron phase transition

被引:0
作者
Dai, Tingting [1 ]
Ding, Huiqiang [1 ]
Cheng, Luan [1 ,2 ]
Zhang, Weining [1 ]
Wang, Enke [2 ]
机构
[1] Dalian Univ Technol, Sch Phys, Dalian 116024, Peoples R China
[2] South China Normal Univ, Inst Quantum Matter, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
QGP droplet; multiple reflection expansion method; self-similarity structure; phase transition; QUARK-GLUON PLASMA; HEAVY-ION COLLISIONS; STATISTICAL-MECHANICS; QCD; DIAGRAM; SYSTEMS; DECONFINEMENT; PERSPECTIVE; PRESSURE; MODEL;
D O I
10.1088/1572-9494/ada884
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the boundary effect of quark-gluon plasma (QGP) droplets and the self-similarity effect of hadrons on QGP-hadron phase transition. In intermediate- or low-energy collisions, when the transverse momentum is below quantum chromodynamics (QCD) scale, QGP cannot be produced. However, if the transverse momentum changes to a relatively large value, a small-scale QGP droplet is produced. The modified MIT bag model with the multiple reflection expansion method is employed to study the QGP droplet with the curved boundary effect. It is found that the energy density, entropy density and pressure of QGP with the influence are smaller than those without the influence. In the hadron phase, we propose the two-body fractal model (TBFM) to study the self-similarity structure, arising from resonance, quantum correlation and interaction effects. It is observed that the energy density, entropy density and pressure increase due to the self-similarity structure. We calculate the transverse momentum spectra of pions with the self-similarity structure influence, which show good agreement with experimental data. Considering both boundary effect and self-similarity structure influence, our model predicts an increase in the transition temperature compared to the scenarios without these two effects in the High Intensity heavy-ion Accelerator Facility (HIAF) energy region, 2.2 GeV to approximately 4.5 GeV.
引用
收藏
页数:12
相关论文
共 67 条
[1]   Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at √sNN=2.76 TeV with the ATLAS Detector at the LHC [J].
Aad, G. ;
Abbott, B. ;
Abdallah, J. ;
Abdelalim, A. A. ;
Abdesselam, A. ;
Abdinov, O. ;
Abi, B. ;
Abolins, M. ;
Abramowicz, H. ;
Abreu, H. ;
Acerbi, E. ;
Acharya, B. S. ;
Ackers, M. ;
Adams, D. L. ;
Addy, T. N. ;
Adelman, J. ;
Aderholz, M. ;
Adomeit, S. ;
Adragna, P. ;
Adye, T. ;
Aefsky, S. ;
Aguilar-Saavedra, J. A. ;
Aharrouche, M. ;
Ahlen, S. P. ;
Ahles, F. ;
Ahmad, A. ;
Ahsan, M. ;
Aielli, G. ;
Akdogan, T. ;
Akesson, T. P. A. ;
Akimoto, G. ;
Akimov, A. V. ;
Alam, M. S. ;
Alam, M. A. ;
Albrand, S. ;
Aleksa, M. ;
Aleksandrov, I. N. ;
Aleppo, M. ;
Alessandria, F. ;
Alexa, C. ;
Alexander, G. ;
Alexandre, G. ;
Alexopoulos, T. ;
Alhroob, M. ;
Aliev, M. ;
Alimonti, G. ;
Alison, J. ;
Aliyev, M. ;
Allport, P. P. ;
Allwood-Spiers, S. E. .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[2]   General pseudoadditivity of composable entropy prescribed by the existence of equilibrium [J].
Abe, S .
PHYSICAL REVIEW E, 2001, 63 (06) :1-061105
[3]  
Abe S., 2001, Series Lecture Notes in Physics, V560
[4]   Strange hadron production in Au plus Au collisions at √SNN=7.7, 11.5, 19.6, 27, and 39 GeV [J].
Adam, J. ;
Adamczyk, L. ;
Adams, J. R. ;
Adkins, J. K. ;
Agakishiev, G. ;
Aggarwal, M. M. ;
Ahammed, Z. ;
Alekseev, I ;
Anderson, D. M. ;
Aoyama, R. ;
Aparin, A. ;
Arkhipkin, D. ;
Aschenauer, E. C. ;
Ashraf, M. U. ;
Atetalla, F. ;
Attri, A. ;
Averichev, G. S. ;
Bairathi, V ;
Barish, K. ;
Bassill, A. J. ;
Behera, A. ;
Bellwied, R. ;
Bhasin, A. ;
Bhati, A. K. ;
Bielcik, J. ;
Bielcikova, J. ;
Bland, L. C. ;
Bordyuzhin, I. G. ;
Brandenburg, J. D. ;
Brandin, A., V ;
Bryslawskyj, J. ;
Bunzarov, I ;
Butterworth, J. ;
Caines, H. ;
de la Barca Sanchez, M. Calderon ;
Cebra, D. ;
Chakaberia, I ;
Chaloupka, P. ;
Chan, B. K. ;
Chang, F-H ;
Chang, Z. ;
Chankova-Bunzarova, N. ;
Chatterjee, A. ;
Chattopadhyay, S. ;
Chen, J. H. ;
Chen, X. ;
Cheng, J. ;
Cherney, M. ;
Christie, W. ;
Crawford, H. J. .
PHYSICAL REVIEW C, 2020, 102 (03)
[5]  
Adamczyk L., 2017, arXiv:1701.07065, V96, DOI DOI 10.1103/PHYSREVC.96.044904
[6]   Experimental and theoretical challenges in the search for the quark-gluon plasma:: The STAR Collaboration's critical assessment of the evidence from RHIC collisions [J].
Adams, J ;
Aggarwal, MM ;
Ahammed, Z ;
Amonett, J ;
Anderson, BD ;
Arkhipkin, D ;
Averichev, GS ;
Badyal, SK ;
Bai, Y ;
Balewski, J ;
Barannikova, O ;
Barnby, LS ;
Baudot, J ;
Bekele, S ;
Belaga, VV ;
Bellingeri-Laurikainen, A ;
Bellwied, R ;
Berger, J ;
Bezverkhny, BI ;
Bharadwaj, S ;
Bhasin, A ;
Bhati, AK ;
Bhatia, VS ;
Bichsel, H ;
Bielcik, J ;
Bielcikova, J ;
Billmeier, A ;
Bland, LC ;
Blyth, CO ;
Bonner, BE ;
Botje, M ;
Boucham, A ;
Bouchet, J ;
Brandin, AV ;
Bravar, A ;
Bystersky, M ;
Cadman, RV ;
Cai, XZ ;
Caines, H ;
Sánchez, MCD ;
Castillo, J ;
Catu, O ;
Cebra, D ;
Chajecki, Z ;
Chaloupka, P ;
Chattopadhyay, S ;
Chen, HF ;
Chen, Y ;
Cheng, J ;
Cherney, M .
NUCLEAR PHYSICS A, 2005, 757 (1-2) :102-183
[7]   Initial correlations of the Glasma energy-momentum tensor [J].
Albacete, Javier L. ;
Guerrero-Rodriguez, Pablo ;
Marquet, Cyrille .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
[8]   The BEST framework for the search for the QCD critical point and the chiral magnetic effect [J].
An, Xin ;
Bluhm, Marcus ;
Du, Lipei ;
Dunne, Gerald, V ;
Elfner, Hannah ;
Gale, Charles ;
Grefa, Joaquin ;
Heinz, Ulrich ;
Huang, Anping ;
Karthein, Jamie M. ;
Kharzeev, Dmitri E. ;
Koch, Volker ;
Liao, Jinfeng ;
Li, Shiyong ;
Martinez, Mauricio ;
McNelis, Michael ;
Mroczek, Debora ;
Mukherjee, Swagato ;
Nahrgang, Marlene ;
Acuna, Angel R. Nava ;
Noronha-Hostler, Jacquelyn ;
Oliinychenko, Dmytro ;
Parotto, Paolo ;
Portillo, Israel ;
Pradeep, Maneesha Sushama ;
Pratt, Scott ;
Rajagopal, Krishna ;
Ratti, Claudia ;
Ridgway, Gregory ;
Schafer, Thomas ;
Schenke, Bjorn ;
Shen, Chun ;
Shi, Shuzhe ;
Singh, Mayank ;
Skokov, Vladimir ;
Son, Dam T. ;
Sorensen, Agnieszka ;
Stephanov, Mikhail ;
Venugopalan, Raju ;
Vovchenko, Volodymyr ;
Weller, Ryan ;
Yee, Ho-Ung ;
Yin, Yi .
NUCLEAR PHYSICS A, 2022, 1017
[9]   Quark-gluon plasma and color glass condensate at RHIC?: The perspective from the BRAHMS experiment [J].
Arsene, I ;
Bearden, IG ;
Beavis, D ;
Besliu, C ;
Budick, B ;
Boggild, H ;
Chasman, C ;
Christensen, CH ;
Christiansen, P ;
Cibor, J ;
Debbe, R ;
Enger, E ;
Gaardhoje, JJ ;
Germinario, M ;
Hansen, O ;
Holm, A ;
Holme, AK ;
Hagel, K ;
Ito, H ;
Jakobsen, E ;
Jipa, A ;
Jundt, F ;
Jordre, JI ;
Jorgensen, CE ;
Karabowicz, R ;
Kim, EJ ;
Kozik, T ;
Larsen, TM ;
Lee, JH ;
Lee, YK ;
Lindahl, S ;
Lovhoiden, G ;
Majka, Z ;
Makeev, A ;
Mikelsen, M ;
Murray, MJ ;
Natowitz, J ;
Neumann, B ;
Nielsen, BS ;
Ouerdane, D ;
Planeta, R ;
Rami, F ;
Ristea, C ;
Ristea, O ;
Röhrich, D ;
Samset, BH ;
Sandberg, D ;
Sanders, SJ ;
Scheetz, RA ;
Staszel, P .
NUCLEAR PHYSICS A, 2005, 757 (1-2) :1-27
[10]   The PHOBOS perspective on discoveries at RHIC [J].
Back, BB ;
Baker, MD ;
Ballintijn, M ;
Barton, DS ;
Becker, B ;
Betts, RR ;
Bickley, AA ;
Bindel, R ;
Budzanowski, A ;
Busza, W ;
Carroll, A ;
Chai, Z ;
Decowski, MP ;
García, E ;
Gburek, T ;
George, NK ;
Gulbrandsen, K ;
Gushue, S ;
Halliwell, C ;
Hamblen, J ;
Harrington, AS ;
Hauer, A ;
Heintzelman, GA ;
Henderson, C ;
Hofman, DJ ;
Hollis, RS ;
Holynski, C ;
Holzman, B ;
Iordanova, A ;
Johnson, E ;
Kane, JL ;
Katzy, J ;
Khan, N ;
Kucewicz, W ;
Kulinich, P ;
Kuo, CM ;
Lee, JW ;
Lin, WT ;
Manly, S ;
McLeod, D ;
Mignerey, AC ;
Nouicer, R ;
Olszewski, A ;
Pak, R ;
Park, IC ;
Pernegger, H ;
Reed, C ;
Remsberg, LP ;
Reuter, A ;
Roland, C .
NUCLEAR PHYSICS A, 2005, 757 (1-2) :28-101