Stability of Tollmien-Schlichting Modes in Magnetohydrodynamic Boundary Layer Flow in Porous Medium: Energy Budget Analysis

被引:0
|
作者
Bharathi, M. C. [1 ]
Kudenatti, Ramesh B. [2 ]
机构
[1] MS Ramaiah Inst Technol, Dept Math, Bangaluru 560001, Karnataka, India
[2] Bengaluru City Univ, Dept Math, Cent Coll Campus, Bengaluru 560001, Karnataka, India
来源
ASME JOURNAL OF HEAT AND MASS TRANSFER | 2025年 / 147卷 / 06期
关键词
boundary layer flow; magnetic field; porous medium; stability; TEMPORAL EIGENVALUE SPECTRUM; POWER-LAW FLUID; ANALYTIC SOLUTION; FLAT-PLATE; INSTABILITIES; EQUATIONS; SURFACE; WALL;
D O I
10.1115/1.4067606
中图分类号
O414.1 [热力学];
学科分类号
摘要
Linear temporal and spatial stability analyses of the magnetohydrodynamic boundary layer flow over a wedge embedded in a porous medium have been carried out to analyze the effects of pressure gradient, Hartmann and Darcy numbers. First, we determine the base state velocity profiles by imposing suitable similarity transformations on governing boundary layer equations and then find linear perturbed equations involving Reynolds number and disturbance wavenumber using Fourier modes. The Chebyshev spectral collocation method which provides insight into the complete structure of the eigenspectrum is used. The effect of Hartmann and Darcy numbers on the boundary layer is to stabilize the flow for all adverse pressure gradient parameters while only unstable modes are noticed in the absence of these effects. The noticed unstable modes are always part of the wall mode for which the phase speeds are found to approach zero. The eigenspectrum for all involved parameters has a balloon-like structure with the appearance of wall mode instability. The critical Reynolds number is found to be increasing for increasing pressure gradient, Hartmann and Darcy numbers. For an adverse pressure gradient, the energy budget shows that the energy production due to Reynolds stress dominates the viscous dissipation which results in destabilization of the flow, while the kinetic energy due to magnetic field and porous medium plays a role in stabilizing the flow. The physical dynamics behind these interesting modes are discussed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Effect of the Tollmien-Schlichting wave on averaged parameters of the boundary layer
    Petrov, G. V.
    THERMOPHYSICS AND AEROMECHANICS, 2010, 17 (04) : 483 - 488
  • [2] Wall heat transfer effects on Klebanoff modes and Tollmien-Schlichting waves in a compressible boundary layer
    Ricco, Pierre
    Tran, Duc-Luan
    Ye, Ganda
    PHYSICS OF FLUIDS, 2009, 21 (02)
  • [3] Damping Tollmien-Schlichting waves in a boundary layer using plasma actuators
    Riherd, Mark
    Roy, Subrata
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (48)
  • [4] VORTEX/TOLLMIEN-SCHLICHTING WAVE INTERACTION STATES IN THE ASYMPTOTIC SUCTION BOUNDARY LAYER
    Dempsey, Liam J.
    Walton, Andrew G.
    QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2017, 70 (03) : 187 - 213
  • [5] Feedback control of boundary layer Tollmien-Schlichting waves using a simple model-based controller
    Li, Yong
    Chen, Zhengwu
    CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (03) : 25 - 38
  • [6] Numerical study on magnetohydrodynamic boundary layer flow of the Carreau fluid in a porous medium: the Chebyshev collocation method
    Kudenatti, Ramesh B.
    Sandhya, L.
    Bujurke, N. M.
    ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2633 - 2654
  • [7] Analysis of the magnetohydrodynamic flow in a porous medium
    Vijayalakshmi, E. Arul
    Santra, S. S.
    Botmart, T.
    Alotaibi, H.
    Loganathan, G. B.
    Kannan, M.
    Visuvasam, J.
    Govindan, V
    AIMS MATHEMATICS, 2022, 7 (08): : 15182 - 15194
  • [8] Experimental and theoretical study of swept-wing boundary-layer instabilities. Three-dimensional Tollmien-Schlichting instability
    Borodulin, V. I.
    Ivanov, A. V.
    Kachanov, Y. S.
    Mischenko, D. A.
    Orlu, R.
    Hanifi, A.
    Hein, S.
    PHYSICS OF FLUIDS, 2019, 31 (11)
  • [9] Numerical study on magnetohydrodynamic boundary layer flow of the Carreau fluid in a porous medium: the Chebyshev collocation method
    Ramesh B. Kudenatti
    L. Sandhya
    N. M. Bujurke
    Engineering with Computers, 2022, 38 : 2633 - 2654
  • [10] Perturbation analysis of a magnetohydrodynamic boundary layer flow
    Khuri, S. A.
    Sayfy, A.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (10) : 1586 - 1590