Stochastic porous media equation with Robin boundary conditions, gravity-driven infiltration and multiplicative noise

被引:0
作者
Ciotir, Ioana [1 ]
Goreac, Dan [2 ,3 ,4 ]
Li, Juan [3 ,5 ]
Tonnoir, Antoine [1 ]
机构
[1] Normandie Univ, INSA Rouen Normandie, LMI, EA 3226,CNRS,FR 3335, F-76000 Rouen, France
[2] Univ Laval, Ecole Actuariat, Quebec City, PQ G1V 0A6, Canada
[3] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[4] Univ Paris Est Creteil, Univ Gustave Eiffel, LAMA, CNRS,UPEM, F-77447 Marne La Vallee, France
[5] Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Stochastic porous media equations; Robin boundary conditions; Maximal monotone operators; Yosida; approximation; FAST DIFFUSION-EQUATIONS;
D O I
10.1016/j.jde.2025.113363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We aim at studying a novel mathematical model associated to a physical phenomenon of infiltration in an homogeneous porous medium. The particularities of our system are connected to the presence of a gravitational acceleration term proportional to the level of saturation, and of a Brownian multiplicative perturbation. Furthermore, the boundary conditions intervene in a Robin manner with the distinction of the behavior along the inflow and outflow respectively. We provide qualitative results of well-posedness, the investigation being conducted through a functional approach. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:31
相关论文
共 19 条
  • [1] Aronson D.G., 2006, The Porous Medium Equation
  • [2] Barbu V., 2016, Stochastic Porous Media Equations
  • [3] Barbu V., 1998, Partial Differential Equations and Boundary Value Problems
  • [4] Finite time extinction of solutions to fast diffusion equations driven by linear multiplicative noise
    Barbu, Viorel
    Da Prato, Giuseppe
    Roeckner, Michael
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 147 - 164
  • [5] Stochastic Porous Media Equations and Self-Organized Criticality
    Barbu, Viorel
    Da Prato, Giuseppe
    Roeckner, Michael
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (03) : 901 - 923
  • [6] The Global Random Attractor for a Class of Stochastic Porous Media Equations
    Beyn, Wolf-Juergen
    Gess, Benjamin
    Lescot, Paul
    Roeckner, Michael
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (03) : 446 - 469
  • [7] Bonnet-Ben Dhia A.-S., 1993, Theorie spectrale des operateurs autoadjoints et application a l'etude des ondes guidees
  • [8] Ciotir I., 2023, Asian J. Control, P1
  • [9] Ciotir I., 2024, Electron. Commun. Probab., V29, P1
  • [10] The stochastic fast logarithmic equation in Rd with multiplicative Stratonovich noise
    Ciotir, Ioana
    Fukuizumi, Reika
    Goreac, Dan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)