Dual-functional polyethyleneimine engineered interfacial polymerization for ultra-high flux reverse osmosis membranes with moderate salt rejection

被引:0
作者
Huang, Feipeng [1 ]
Lu, Jiancong [1 ,2 ]
Xiang, Xinchen [1 ]
Qian, Yukun [1 ]
Li, Ge [1 ]
Lu, Dan [1 ,3 ]
Shi, Guozhong [1 ,4 ]
Zhang, Lin [1 ,3 ]
机构
[1] Zhejiang Univ, Coll Chem & Engn, MOE Engn Res Ctr Membrane & Water Treatment Techno, Hangzhou 310058, Peoples R China
[2] Zhejiang Baima Lake Lab Co Ltd, Hangzhou 310053, Peoples R China
[3] Zhejiang Univ, Innovat Ctr Yangtze River Delta, Future Environm Lab, Jiaxing 314100, Peoples R China
[4] Zhejiang Energy R&D Inst Co Ltd, Engn Res Ctr Novel Water Source Ind Zhejiang Prov, Hangzhou 311121, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Reverse osmosis membrane; Polyamide; Polyethyleneimine; Ultra-high flux; RO MEMBRANES; SURFACE MODIFICATION; PERFORMANCE; NANOFILTRATION; ENHANCEMENT; DEPENDENCE; SEPARATION; CHEMISTRY;
D O I
10.1016/j.seppur.2025.132926
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Reverse osmosis (RO) membranes are widely recognized for their high solute rejection, yet their relatively low water flux leads to elevated energy consumption. Addressing the growing demand for water treatment across diverse salinity levels-from hypersaline brines to micro-polluted water sources-requires RO membranes with ultra-high flux (more than 100 L m-2 h-1) and moderate salt rejection (about 95 %), which remain scarce in current technologies. To bridge this gap, we developed a novel RO membrane by strategically regulating the interfacial polymerization process using polyethyleneimine (PEI). This approach reduces polyamide network cross-linking by limiting aqueous monomer diffusion, thereby slowing reaction kinetics and forming a thinner, more permeable selective layer. The optimized membrane achieved an exceptional water flux of 157.9 L m-2 h-1 while maintaining a NaCl rejection of 94.5 %. Structural characterization reveals enhanced hydrophilicity (water contact angle decreased from 68.8 degrees to 35.9 degrees), a thinner selective layer (450 nm vs. 220 nm), and reduced cross-linking degree (99.1 % vs 86.7 %.), collectively contributing to the significant flux improvement. Comparative evaluation with commercial membranes (SW30, BW30, XLE, NF90) demonstrate superior desalination efficiency, highlighting its potential for applications requiring high throughput and moderate selectivity, such as industrial wastewater reuse and drinking water treatment. This research presents a scalable strategy for tailoring the membrane separation performance, advancing energy-efficient desalination technologies.
引用
收藏
页数:8
相关论文
共 53 条
[1]   Finely Tuned Submicroporous Thin-Film Molecular Sieve Membranes for Highly Efficient Fluid Separations [J].
Ali, Zain ;
Ghanem, Bader S. ;
Wang Yingge ;
Pacheco, Federico ;
Ogieglo, Wojciech ;
Vovusha, Hakkim ;
Genduso, Giuseppe ;
Schwingenschlogl, Udo ;
Han Yu ;
Pinnau, Ingo .
ADVANCED MATERIALS, 2020, 32 (22)
[2]   Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review [J].
Asadollahi, Mandieh ;
Bastani, Dariush ;
Musavi, Seyyed Abbas .
DESALINATION, 2017, 420 :330-383
[3]   Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification [J].
Dai, Ruobin ;
Zhou, Huimin ;
Wang, Tianlin ;
Qiu, Zhiwei ;
Long, Li ;
Lin, Shihong ;
Tang, Chuyang Y. ;
Wang, Zhiwei .
NATURE WATER, 2023, 1 (03) :281-290
[4]  
Dou J., 2023, J. Membr. Sci.
[5]   The Future of Seawater Desalination: Energy, Technology, and the Environment [J].
Elimelech, Menachem ;
Phillip, William A. .
SCIENCE, 2011, 333 (6043) :712-717
[6]   High-flux polyamide membrane with improved chlorine resistance for efficient dye/salt separation based on a new N-rich amine monomer [J].
Feng, Xiaoquan ;
Liu, Decheng ;
Ye, Hu ;
Peng, Donglai ;
Wang, Jing ;
Han, Shuangqiao ;
Zhang, Yatao .
SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 278
[7]   Neutron Reflectivity and Performance of Polyamide Nanofilms for Water Desalination [J].
Foglia, Fabrizia ;
Karan, Santanu ;
Nania, Manuela ;
Jiang, Zhiwei ;
Porter, Alexandra E. ;
Barker, Robert ;
Livingston, Andrew G. ;
Cabral, Joao T. .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (37)
[8]   TFC polyamide membranes modified by grafting of hydrophilic polymers: an FT-IR/AFM/TEM study [J].
Freger, V ;
Gilron, J ;
Belfer, S .
JOURNAL OF MEMBRANE SCIENCE, 2002, 209 (01) :283-292
[9]   Polyamide desalination membranes: Formation, structure, and properties [J].
Freger, Viatcheslav ;
Ramon, Guy Z. .
PROGRESS IN POLYMER SCIENCE, 2021, 122
[10]   Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes [J].
Ghosh, Asim K. ;
Hoek, Eric M. V. .
JOURNAL OF MEMBRANE SCIENCE, 2009, 336 (1-2) :140-148