Spatio-Temporal Dynamics of M1 and M2 Macrophages in a Multiphase Model of Tumor Growth

被引:0
作者
Lampropoulos, Ioannis [1 ]
Kevrekidis, Panayotis G. [2 ,3 ]
Zois, Christos E. [4 ,5 ]
Byrne, Helen [6 ,7 ]
Kavousanakis, Michail [1 ]
机构
[1] Natl Tech Univ Athens, Sch Chem Engn, Iroon Polytechneiou 9, Athens 15780, Greece
[2] Univ Massachusetts Amherst, Dept Math & Stat, Amherst, MA 01003 USA
[3] Univ Massachusetts Amherst, Dept Phys, Amherst, MA 01003 USA
[4] Univ Oxford, Dept Oncol, Old Rd Campus Res Bldg, Oxford OX3 7DQ, England
[5] Democritus Univ Thrace, Dept Radiotherapy & Oncol, Dimokritou 7A, Komotini 68100, Greece
[6] Univ Oxford, Math Inst, Wellington Sq, Oxford OX1 2JD, England
[7] Univ Oxford, Ludwig Inst Canc Res, Wellington Sq, Oxford OX1 2JD, England
关键词
Multiphase model; Immunotherapy; MATHEMATICAL-MODEL; CANCER; CELL; POLARIZATION; MATURATION; INVASION; REVEALS;
D O I
10.1007/s11538-025-01466-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study investigates the complex dynamics of vascular tumors and their interplay with macrophages, key agents of the innate immune response. We model the tumor microenvironment as a multiphase fluid, with each cellular population treated as a distinct, non-mixing phase. The framework also incorporates diffusible species that are critical for processes such as nutrient transport, angiogenesis, chemotaxis, and macrophage activation. A central contribution of this work is the explicit modeling of macrophage infiltration and polarization within the tumor microenvironment. The model captures the divergent roles of M1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}_1$$\end{document} (anti-tumor) and M2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}_2$$\end{document} (pro-tumor) macrophages and their influence on tumor aggressiveness and progression. Through numerical simulations, we demonstrate the emergence of both spatial and phenotypic heterogeneity in the macrophage population, including their peripheral localization and limited core infiltration -patterns consistent with experimental observations. Furthermore, this is the first multiphase model to incorporate the effects of TGF-beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}-targeting immunotherapy using vactosertib. Our simulations demonstrate that treatment initially enhances the presence of anti-tumor macrophages, followed by a relapse period where tumor dynamics returns to pre-treatment trends. Model parameters are grounded in experimental data and clinically relevant dosage protocols.
引用
收藏
页数:40
相关论文
共 90 条
[1]   Role of T cells in cancer immunotherapy: Opportunities and challenges [J].
Ahmed, Hossain ;
Mahmud, Aar Rafi ;
Faijanur-Rob-Siddiquee, Mohd ;
Shahriar, Asif ;
Biswas, Partha ;
Shimul, Md. Ebrahim Khalil ;
Ahmed, Shahlaa Zernaz ;
Ema, Tanzila Ismail ;
Rahman, Nova ;
Khan, Md. Arif ;
Mizan, Md. Furkanur Rahaman ;
Bin Emran, Talha .
CANCER PATHOGENESIS AND THERAPY, 2023, 1 (02) :116-126
[2]   Advances in Anti-Cancer Immunotherapy: Car-T Cell, Checkpoint Inhibitors, Dendritic Cell Vaccines, and Oncolytic Viruses, and Emerging Cellular and Molecular Targets [J].
Alard, Emilie ;
Butnariu, Aura-Bianca ;
Grillo, Marta ;
Kirkham, Charlotte ;
Zinovkin, Dmitry Aleksandrovich ;
Newnham, Louise ;
Macciochi, Jenna ;
Pranjol, Zahidul Islam .
CANCERS, 2020, 12 (07) :1-38
[3]   TSPO PET for glioma imaging using the novel ligand 18F-GE-180: first results in patients with glioblastoma [J].
Albert, Nathalie L. ;
Unterrainer, M. ;
Fleischmann, D. F. ;
Lindner, S. ;
Vettermann, F. ;
Brunegraf, A. ;
Vomacka, L. ;
Brendel, M. ;
Wenter, V. ;
Wetzel, C. ;
Rupprecht, R. ;
Tonn, J. -C. ;
Belka, C. ;
Bartenstein, P. ;
Niyazi, M. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 (13) :2230-2238
[4]   Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages [J].
Arlauckas, Sean P. ;
Garren, Seth B. ;
Garris, Chris S. ;
Kohler, Rainer H. ;
Oh, Juhyun ;
Pittet, Mikael J. ;
Weissleder, Ralph .
THERANOSTICS, 2018, 8 (21) :5842-5854
[5]   A Unidirectional Transition from Migratory to Perivascular Macrophage Is Required for Tumor Cell Intravasation [J].
Arwert, Esther N. ;
Harney, Allison S. ;
Entenberg, David ;
Wang, Yarong ;
Sahai, Erik ;
Pollard, Jeffrey W. ;
Condeelis, John S. .
CELL REPORTS, 2018, 23 (05) :1239-1248
[6]  
Bernard Samuel, 2006, Genome Inform, V17, P72
[7]   Roles of macrophages in tumor development: a spatiotemporal perspective [J].
Bied, Mathilde ;
Ho, William W. ;
Ginhoux, Florent ;
Bleriot, Camille .
CELLULAR & MOLECULAR IMMUNOLOGY, 2023, 20 (09) :983-992
[8]   Mathematical modelling of a hypoxia-regulated oncolytic virus delivered by tumour-associated macrophages [J].
Boemo, Michael A. ;
Byrne, Helen M. .
JOURNAL OF THEORETICAL BIOLOGY, 2019, 461 :102-116
[9]   Novel Radiomic Measurements of Tumor-Associated Vasculature Morphology on Clinical Imaging as a Biomarker of Treatment Response in Multiple Cancers [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Bera, Kaustav ;
Alilou, Mehdi ;
Khorrami, Mohammadhadi ;
Leo, Patrick ;
Etesami, Maryam ;
Vulchi, Manasa ;
Turk, Paulette ;
Gupta, Amit ;
Jain, Prantesh ;
Fu, Pingfu ;
Pennell, Nathan ;
Velcheti, Vamsidhar ;
Abraham, Jame ;
Plecha, Donna ;
Madabhushi, Anant .
CLINICAL CANCER RESEARCH, 2022, 28 (20) :4410-4424
[10]   A multiphase model describing vascular tumour growth [J].
Breward, CJW ;
Byrne, HM ;
Lewis, CE .
BULLETIN OF MATHEMATICAL BIOLOGY, 2003, 65 (04) :609-640