FedWeight: mitigating covariate shift of federated learning on electronic health records data through patients re-weighting

被引:0
作者
Zhu, He [1 ,2 ]
Bai, Jun [1 ,2 ]
Li, Na [3 ]
Li, Xiaoxiao [4 ,5 ]
Liu, Dianbo [6 ,7 ]
Buckeridge, David L. [2 ,8 ]
Li, Yue [1 ,2 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[2] Mila Quebec Inst, Montreal, PQ, Canada
[3] Univ Calgary, Cumming Sch Med, Community Hlth Sci, Calgary, AB, Canada
[4] Univ British Columbia, Elect & Comp Engn, Vancouver, BC, Canada
[5] Vector Inst, Toronto, ON, Canada
[6] Natl Univ Singapore, Sch Med, Singapore, Singapore
[7] Natl Univ Singapore, Coll Design & Engn, Singapore, Singapore
[8] McGill Univ, Sch Populat & Global Hlth, Montreal, PQ, Canada
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
CRITICALLY-ILL PATIENTS; BLOOD UREA NITROGEN; INTENSIVE-CARE-UNIT; ARTIFICIAL-INTELLIGENCE; MORTALITY; SEDATION; PNEUMONIA; PROPOFOL; DRUG;
D O I
10.1038/s41746-025-01661-8
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Federated learning (FL) enables collaborative analysis of decentralized medical data while preserving patient privacy. However, the covariate shift from demographic and clinical differences can reduce model generalizability. We propose FedWeight, a novel FL framework that mitigates covariate shift by reweighting patient data from the source sites using density estimators, allowing the trained model to better align with the distribution of the target site. To support unsupervised applications, we introduce FedWeight ETM, a federated embedded topic model. We evaluated FedWeight in cross-site FL on the eICU dataset and cross-dataset FL between eICU and MIMIC III. FedWeight consistently outperforms standard FL baselines in predicting ICU mortality, ventilator use, sepsis diagnosis, and length of stay. SHAP-based interpretation and ETM-based topic modeling reveal improved identification of clinically relevant characteristics and disease topics associated with ICU readmission.
引用
收藏
页数:19
相关论文
共 94 条
[1]   Strategies for preventing ventilator-associated pneumonia in adults in the Middle East and North Africa Region: A systematic review and meta-analysis [J].
Abousaad, Omar ;
Al-Ajji, Aisha ;
Abouazab, Noor ;
Aljoaid, Adel ;
Sreedharan, Jithin K. .
ANNALS OF THORACIC MEDICINE, 2025, 20 (02) :90-97
[2]  
Amodei D, 2016, Arxiv, DOI [arXiv:1606.06565, 10.48550/arXiv.1606.06565]
[3]   Blood Urea Nitrogen (BUN) is independently associated with mortality in critically ill patients admitted to ICU [J].
Arihan, Okan ;
Wernly, Bernhard ;
Lichtenauer, Michael ;
Franz, Marcus ;
Kabisch, Bjoern ;
Muessig, Johanna ;
Masyuk, Maryna ;
Lauten, Alexander ;
Schulze, Paul Christian ;
Hoppe, Uta C. ;
Kelm, Malte ;
Jung, Christian .
PLOS ONE, 2018, 13 (01)
[4]   CARDIAC-ARRHYTHMIAS IN CRITICALLY ILL PATIENTS - EPIDEMIOLOGIC-STUDY [J].
ARTUCIO, H ;
PEREIRA, M .
CRITICAL CARE MEDICINE, 1990, 18 (12) :1383-1388
[5]   PROPOFOL - A NEW DRUG FOR SEDATION IN THE INTENSIVE-CARE UNIT [J].
BARR, J .
INTERNATIONAL ANESTHESIOLOGY CLINICS, 1995, 33 (01) :131-154
[6]   Mortality in sepsis and septic shock in Europe, North America and Australia between 2009 and 2019-results from a systematic review and meta-analysis [J].
Bauer, Michael ;
Gerlach, Herwig ;
Vogelmann, Tobias ;
Preissing, Franziska ;
Stiefel, Julia ;
Adam, Daniel .
CRITICAL CARE, 2020, 24 (01)
[7]   Effect of Continuous Epinephrine Infusion on Survival in Critically Ill Patients: A Meta-Analysis of Randomized Trials* [J].
Belletti, Alessandro ;
Nagy, Adam ;
Sartorelli, Marianna ;
Mucchetti, Marta ;
Putzu, Alessandro ;
Sartini, Chiara ;
Morselli, Federica ;
De Domenico, Pierfrancesco ;
Zangrillo, Alberto ;
Landoni, Giovanni ;
Lembo, Rosalba .
CRITICAL CARE MEDICINE, 2020, 48 (03) :398-405
[8]   Elevated admission lactate levels in the emergency department are associated with increased 30-day mortality in non-trauma critically ill patients [J].
Bernhard, Michael ;
Doell, Stephanie ;
Kramer, Andre ;
Weidhase, Lorenz ;
Hartwig, Thomas ;
Petros, Sirak ;
Gries, Andre .
SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION & EMERGENCY MEDICINE, 2020, 28 (01)
[9]  
Beutel DJ, 2022, Arxiv, DOI arXiv:2007.14390
[10]  
Bishop Christopher M, 1995, Neural networks for pattern recognition