Rotation-invariant 3D convolutional neural networks for 6D object pose estimation

被引:0
作者
Chen, Zhizhong [1 ]
Wang, Zhihang [1 ]
Xing, Xue Hui [1 ]
Kuai, Tao [1 ]
机构
[1] Northwest Inst Mech & Elect Engn, 5 Biyuan East Rd, Xianyang 712000, Shaanxi, Peoples R China
关键词
rotation-invariant; geometric feature extraction; pose estimation;
D O I
10.1504/IJCSE.2025.145133
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
6D object pose estimation, crucial for applications such as scene understanding, AR/VR, and robotic grasping, focuses on determining an object's rotation and translation from single-view images. Despite advancements in 3D deep learning, existing methods still struggle with large shape variations, high training demands, and unseen poses. This paper addresses these issues by introducing a rotation-invariant neural network. We propose a rotation-invariant 3D convolutional network that processes a point cloud to predict per-point canonical coordinates, from which the 6D pose, is estimated. The network utilises relative distances and angles within a representative point set. Experiments on a public dataset show that our method outperforms several state-of-the-art baselines, excelling in handling novel poses and severe occlusions. Ablation studies further highlight the importance of the individual components.
引用
收藏
页码:1 / 9
页数:10
相关论文
共 41 条
[1]   Learning Canonical Shape Space for Category-Level 6D Object Pose and Size Estimation [J].
Chen, Dengsheng ;
Li, Jun ;
Wang, Zheng ;
Xu, Kai .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11970-11979
[2]  
Chen K., 2021, P IEEECVF INT C COMP, P2773
[3]   FS-Net: Fast Shape-based Network for Category-Level 6D Object Pose Estimation with Decoupled Rotation Mechanism [J].
Chen, Wei ;
Jia, Xi ;
Chang, Hyung Jin ;
Duan, Jinming ;
Shen, Linlin ;
Leonardis, Ales .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :1581-1590
[4]   iCaps: Iterative Category-Level Object Pose and Shape Estimation [J].
Deng, Xinke ;
Geng, Junyi ;
Bretl, Timothy ;
Xiang, Yu ;
Fox, Dieter .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02) :1784-1791
[5]  
Deng XK, 2020, IEEE INT CONF ROBOT, P3665, DOI [10.1109/icra40945.2020.9196714, 10.1109/ICRA40945.2020.9196714]
[6]   GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting [J].
Di, Yan ;
Zhang, Ruida ;
Lou, Zhiqiang ;
Manhardt, Fabian ;
Ji, Xiangyang ;
Navab, Nassir ;
Tombari, Federico .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :6771-6781
[7]   SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [J].
Di, Yan ;
Manhardt, Fabian ;
Wang, Gu ;
Ji, Xiangyang ;
Navab, Nassir ;
Tombari, Federico .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :12376-12385
[8]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[9]   FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation [J].
He, Yisheng ;
Huang, Haibin ;
Fan, Haoqiang ;
Chen, Qifeng ;
Sun, Jian .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :3002-3012
[10]   PVN3D: A Deep Point-wise 3D Keypoints Voting Network for 6DoF Pose Estimation [J].
He, Yisheng ;
Sun, Wei ;
Huang, Haibin ;
Liu, Jianran ;
Fan, Haoqiang ;
Sun, Jian .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11629-11638