A note on Kronecker's approximation theorem

被引:0
作者
Maksimova, D. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow, Russia
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2025年 / 36卷 / 03期
关键词
Number Theory; Inhomogeneous linear forms; Diophantine approximation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve on Gonek-Montgomery's quantitative version of Kronecker's approximation theorem. (c) 2024 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:729 / 734
页数:6
相关论文
共 5 条
  • [1] Cassels J., 1957, Cambridge Tracts in Mathematics and Mathematical Physics, V45
  • [2] The best quantitative Kronecker's theorem
    Chen, YG
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 691 - 705
  • [3] Kronecker's approximation theorem
    Gonek, Steven M.
    Montgomery, Hugh L.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2016, 27 (02): : 506 - 523
  • [4] Some Remarks on Inhomogeneous Diophantine Approximations
    Moshchevitin, Nikolay
    [J]. ARCHIV DER MATHEMATIK, 2023, 120 (02) : 159 - 169
  • [5] Turan P., 1959, Acta Math. Acad. Sci. Hungar., V10, P277