Characterization of diverse Cas9 orthologs for genome and epigenome editing

被引:0
|
作者
Butterfield, Gabriel L. [1 ,2 ]
Rohm, Dahlia [1 ,2 ]
Roberts, Avery [3 ]
Nethery, Matthew A. [3 ]
Rizzo, Anthony J. [1 ,2 ]
Morone, Daniel J. [1 ,2 ]
Garnier, Lisa [1 ,2 ]
Iglesias, Nahid [1 ,2 ]
Barrangou, Rodolphe [3 ]
Gersbach, Charles A. [1 ,2 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Ctr Adv Genom Technol, Durham, NC 27708 USA
[3] North Carolina State Univ, Dept Food Bioproc & Nutr Sci, Raleigh, NC 27606 USA
关键词
CRISPR; genome editing; Cas9; IN-VIVO; WEB TOOL; DNA; IMMUNITY; MUSCLE; BASE; TRANSCRIPTION; CRISPR/CAS9; ACTIVATION; CHOPCHOP;
D O I
10.1073/pnas.2417674122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas9 systems have revolutionized biotechnology, creating diverse new opportunities for biomedical research and therapeutic genome and epigenome editing. Despite the abundance of bacterial CRISPR-Cas9 systems, relatively few are effective in human cells, limiting the overall potential of CRISPR technology. To expand the CRISPR-Cas toolbox, we characterized a set of type II CRISPR-Cas9 systems from select bacterial genera and species encoding diverse Cas9s. Four systems demonstrated robust and specific gene repression in human cells when used as nuclease-null dCas9s fused with a KRAB domain and were also highly active nucleases in human cells. These systems have distinct protospacer adjacent motifs (PAMs), including AT-rich motifs and sgRNA features orthogonal to the commonly used Staphylococcus aureus and Streptococcus pyogenes Cas9s. Additionally, we assessed gene activation when fused with the p300 catalytic domain. Notably, S. uberis Cas9 performed competitively against benchmarks with promising repression, activation, nuclease, and base editing activity. This study expands the CRISPR-Cas9 repertoire, enabling effective genome and epigenome editing for diverse applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Active fusions of Cas9 orthologs
    Josipovic, Goran
    Zoldos, Vlatka
    Vojta, Aleksandar
    JOURNAL OF BIOTECHNOLOGY, 2019, 301 : 18 - 23
  • [42] Application progress of CRISPR/Cas9 genome-editing technology in edible fungi
    Zhang, Yan
    Chen, Shutong
    Yang, Long
    Zhang, Qiang
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [43] Non-viral Delivery of CRISPR/Cas9 Genome Editing
    Sheng, Jinhan
    Zheng, Qizhen
    Wang, Ming
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (03):
  • [44] Application of CRISPR/Cas9 genome editing to the study and treatment of disease
    Pellagatti, Andrea
    Dolatshad, Hamid
    Valletta, Simona
    Boultwood, Jacqueline
    ARCHIVES OF TOXICOLOGY, 2015, 89 (07) : 1023 - 1034
  • [45] Advances in CRISPR/Cas9 Genome Editing for the Treatment of Muscular Dystrophies
    Fatehi, Sina
    Marks, Ryan M.
    Rok, Matthew J.
    Perillat, Lucie
    Ivakine, Evgueni A.
    Cohn, Ronald D.
    HUMAN GENE THERAPY, 2023, 34 (9-10) : 388 - 403
  • [46] Preparation of Cas9 Ribonucleoproteins for Genome Editing
    Lin, Sheng-Wei
    Viet Quoc Nguyen
    Lin, Steven
    BIO-PROTOCOL, 2022, 12 (10):
  • [47] CRISPR/Cas9 and Genome Editing in Drosophila
    Bassett, Andrew R.
    Liu, Ji-Long
    JOURNAL OF GENETICS AND GENOMICS, 2014, 41 (01) : 7 - 19
  • [48] CRISPR/Cas9 in Genome Editing and Beyond
    Wang, Haifeng
    La Russa, Marie
    Qi, Lei S.
    ANNUAL REVIEW OF BIOCHEMISTRY, VOL 85, 2016, 85 : 227 - 264
  • [49] Genome Editing Using Cas9 Nickases
    Trevino, Alexandro E.
    Zhang, Feng
    USE OF CRISPR/CAS9, ZFNS, AND TALENS IN GENERATING SITE-SPECIFIC GENOME ALTERATIONS, 2014, 546 : 161 - 174
  • [50] CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review
    Syding, Linn Amanda
    Nickl, Petr
    Kasparek, Petr
    Sedlacek, Radislav
    CELLS, 2020, 9 (04)