Characterization of diverse Cas9 orthologs for genome and epigenome editing

被引:0
|
作者
Butterfield, Gabriel L. [1 ,2 ]
Rohm, Dahlia [1 ,2 ]
Roberts, Avery [3 ]
Nethery, Matthew A. [3 ]
Rizzo, Anthony J. [1 ,2 ]
Morone, Daniel J. [1 ,2 ]
Garnier, Lisa [1 ,2 ]
Iglesias, Nahid [1 ,2 ]
Barrangou, Rodolphe [3 ]
Gersbach, Charles A. [1 ,2 ]
机构
[1] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[2] Duke Univ, Ctr Adv Genom Technol, Durham, NC 27708 USA
[3] North Carolina State Univ, Dept Food Bioproc & Nutr Sci, Raleigh, NC 27606 USA
关键词
CRISPR; genome editing; Cas9; IN-VIVO; WEB TOOL; DNA; IMMUNITY; MUSCLE; BASE; TRANSCRIPTION; CRISPR/CAS9; ACTIVATION; CHOPCHOP;
D O I
10.1073/pnas.2417674122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-Cas9 systems have revolutionized biotechnology, creating diverse new opportunities for biomedical research and therapeutic genome and epigenome editing. Despite the abundance of bacterial CRISPR-Cas9 systems, relatively few are effective in human cells, limiting the overall potential of CRISPR technology. To expand the CRISPR-Cas toolbox, we characterized a set of type II CRISPR-Cas9 systems from select bacterial genera and species encoding diverse Cas9s. Four systems demonstrated robust and specific gene repression in human cells when used as nuclease-null dCas9s fused with a KRAB domain and were also highly active nucleases in human cells. These systems have distinct protospacer adjacent motifs (PAMs), including AT-rich motifs and sgRNA features orthogonal to the commonly used Staphylococcus aureus and Streptococcus pyogenes Cas9s. Additionally, we assessed gene activation when fused with the p300 catalytic domain. Notably, S. uberis Cas9 performed competitively against benchmarks with promising repression, activation, nuclease, and base editing activity. This study expands the CRISPR-Cas9 repertoire, enabling effective genome and epigenome editing for diverse applications.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Comparative analysis of genome editing systems, Cas9 and BE3, in silkworms
    Liu, Yue
    Li, Yufeng
    Liang, Yan
    Wang, Ting
    Yang, Chengfei
    Ma, Sanyuan
    Xia, Qingyou
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 158 : 486 - 492
  • [22] CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications
    Cheng, Hao
    Zhang, Feng
    Ding, Yang
    PHARMACEUTICS, 2021, 13 (10)
  • [23] CRISPR/Cas9: A powerful tool for crop genome editing
    Song, Gaoyuan
    Jia, Meiling
    Chen, Kai
    Kong, Xingchen
    Khattak, Bushra
    Xie, Chuanxiao
    Li, Aili
    Mao, Long
    CROP JOURNAL, 2016, 4 (02): : 75 - 82
  • [24] Characterization of Brevibacillus laterosporus Cas9 (BlatCas9) for Mammalian Genome Editing
    Gao, Ning
    Zhang, Chengdong
    Hu, Ziying
    Li, Miaomiao
    Wei, Jingjing
    Wang, Yongming
    Liu, Huihui
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2020, 8
  • [25] CRISPR/CAS9 GENOME EDITING FOR NEURODEGENERATIVE DISEASES
    Nojadeh, Jafar Nouri
    Eryilmaz, Nur Seren Bildiren
    Erguder, Berrin Imge
    EXCLI JOURNAL, 2023, 22 : 567 - 582
  • [26] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [27] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [28] CRSIPR/Cas9: Magic scissors for genome editing
    Wang, Ming
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (36): : 4168 - 4170
  • [29] A glance at genome editing with CRISPR–Cas9 technology
    Antara Barman
    Bornali Deb
    Supriyo Chakraborty
    Current Genetics, 2020, 66 : 447 - 462
  • [30] Genome editing via delivery of Cas9 ribonucleoprotein
    DeWitt, Mark A.
    Corn, Jacob E.
    Carroll, Dana
    METHODS, 2017, 121 : 9 - 15