Finite Groups with Given \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho$$\end{document}-Semipermutable Subgroups

被引:0
作者
Y. X. Huang [1 ]
Y. Xu [1 ]
机构
[1] Henan University of Science and Technology,School of Mathematics and Statistics
关键词
-semipermutable; -nilpotency; finite group;
D O I
10.1134/S0001434624603976
中图分类号
学科分类号
摘要
引用
收藏
页码:338 / 342
页数:4
相关论文
共 50 条
[31]   A Generalization of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-Permutability [J].
Zhigang Wang ;
Jin Guo ;
Inna N. Safonova ;
Alexander N. Skiba .
Communications in Mathematics and Statistics, 2022, 10 (3) :565-579
[32]   On m-σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}-embedded subgroups of finite groups [J].
J. Guo ;
W. Guo ;
S. Qiao ;
C. Zhang .
Acta Mathematica Hungarica, 2021, 165 (1) :100-111
[33]   Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {Z}$$\end{document}-permutable subgroups of finite groups [J].
A. A. Heliel ;
A. Ballester-Bolinches ;
R. Esteban-Romero ;
M. O. Almestady .
Monatshefte für Mathematik, 2016, 179 (4) :523-534
[34]   Finite Groups with ℙ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{P}$$\end{document}-Subnormal Schmidt Subgroups [J].
Xiaolan Yi ;
Zhuyan Xu ;
S. F. Kamornikov .
Proceedings of the Steklov Institute of Mathematics, 2024, 325 (Suppl 1) :S231-S238
[37]   On \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sigma $\end{document}-Subnormality of Sylow Subgroups in a Finite Group [J].
S. F. Kamornikov ;
V. N. Tyutyanov ;
O. L. Shemetkova .
Siberian Mathematical Journal, 2021, 62 (2) :230-238
[38]   Critical \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\Omega $$ \end{document} -Fiber Formations of Finite Groups [J].
M. M. Sorokina ;
N. V. Silenok .
Mathematical Notes, 2002, 72 (1-2) :241-252
[39]   New characterizations of σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-nilpotent finite groups [J].
Viachaslau I. Murashka ;
Alexander F. Vasil’ev .
Ricerche di Matematica, 2024, 73 (1) :611-618
[40]   On the 𝔉\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{F}$$\end{document}-Norm of a Finite Group [J].
V. N. Ryzhik ;
I. N. Safonova ;
A. N. Skiba .
Proceedings of the Steklov Institute of Mathematics, 2022, 317 (Suppl 1) :S136-S141