Non-linear characterization of Jordan ∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$*$$\end{document}-isomorphisms via maps on positive cones of C∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^*$$\end{document}-algebrasNon-linear characterization of JordanO. Hatori and S. Oi
被引:0
作者:
论文数: 引用数:
h-index:
机构:
Osamu Hatori
[1
]
Shiho Oi
论文数: 0引用数: 0
h-index: 0
机构:
Niigata University,Department of Mathematics, Faculty of ScienceNiigata University,Institute of Science and Technology
Shiho Oi
[2
]
机构:
[1] Niigata University,Institute of Science and Technology
[2] Niigata University,Department of Mathematics, Faculty of Science
来源:
Acta Scientiarum Mathematicarum
|
2025年
/
91卷
/
1期
关键词:
-algebras;
Positive cones;
Norms;
Isometries;
Central elements;
Invertible elements;
Spectra;
Spectral norms;
Jordan ;
-isomorphisms;
Preserver problems;
46L05;
47B49;
47B65;
D O I:
10.1007/s44146-024-00140-y
中图分类号:
学科分类号:
摘要:
We study maps between positive definite or positive semidefinite cones of unital C∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^*$$\end{document}-algebras. We describe surjective maps that preserve the norm of the quotient or product of elements;the spectrum of the quotient or product of elements;the spectral seminorm of the quotient or product of elements. These maps relate to the Jordan ∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$*$$\end{document}-isomorphisms between the specified C∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^*$$\end{document}-algebras. While a surjection between positive definite cones that preserves the norm of the quotient of elements may not be extended to a linear map between the underlying C∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^*$$\end{document}-algebras, the other types of surjections can be extended to a Jordan ∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$*$$\end{document}-isomorphism or a Jordan ∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$*$$\end{document}-isomorphism followed by 2-sided multiplication by a positive invertible element. We also study conditions for the centrality of positive invertible elements. We generalize “the corollary” regarding surjections between positive semidefinite cones of unital C∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^*$$\end{document}-algebras. Applying it, we provide positive solutions to the problem posed by Molnár for general unital C∗\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$C^*$$\end{document}-algebras.