Adaptive Variable Length Sliding Window Network Coding for Low Latency Transmission in FANETs via Deep Reinforcement Learning

被引:0
作者
Song, Bo [1 ]
Xu, Lei [1 ]
Qiu, Xiulin [2 ]
Ke, Yaqi [1 ]
Yang, Yuwang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Automat, Zhenjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous aerial vehicles; Encoding; Delays; Network coding; Interference; Heuristic algorithms; Signal to noise ratio; Deep reinforcement learning; Indexes; Vehicle dynamics; FANET; deep reinforcement learning; transmission performance; channel quality; network coding; LOW-DELAY;
D O I
10.1109/LWC.2025.3543921
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Future flying ad-hoc networks (FANETs) need to address issues related to delay and channel interference while ensuring high data transmission accuracy. In this letter, we propose a proximal policy optimization (PPO)-based adaptive adjustment algorithm for sliding window-based network coding to mitigate channel contention and signal degradation caused by increased traffic load. We model the adaptive adjustment of the sliding window size as a Markov decision process, considering effective rate, node congestion, and total delay in the reward function. To further improve the algorithm's performance, we enhance PPO with long short-term memory (LSTM) networks to process time-series data. Experimental results demonstrate that our method reduces delay, improves packet delivery rate and throughput compared with traditional sliding window network coding algorithms.
引用
收藏
页码:1441 / 1445
页数:5
相关论文
共 10 条
[1]  
Ali R., 2023, IEEE ACCESS, V11, P78835, DOI DOI 10.1109/ACCESS.2023.3298102
[2]   Green Edge Intelligence for Smart Management of a FANET in Disaster-Recovery Scenarios [J].
Faraci, Giuseppe ;
Rizzo, Santi Agatino ;
Schembra, Giovanni .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) :3819-3831
[3]   Caterpillar RLNC With Feedback (CRLNC-FB): Reducing Delay in Selective Repeat ARQ Through Coding [J].
Gabriel, Frank ;
Wunderlich, Simon ;
Pandi, Sreekrishna ;
Fitzek, Frank H. P. ;
Reisslein, Martin .
IEEE ACCESS, 2018, 6 :44787-44802
[4]   Low Delay Random Linear Coding and Scheduling Over Multiple Interfaces [J].
Garcia-Saavedra, Andres ;
Karzand, Mohammad ;
Leith, Douglas J. .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2017, 16 (11) :3100-3114
[5]   Design of FEC for Low Delay in 5G [J].
Karzand, Mohammad ;
Leith, Douglas J. ;
Cloud, Jason ;
Medard, Muriel .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (08) :1783-1793
[6]   Routing in Flying Ad Hoc Networks: A Comprehensive Survey [J].
Lakew, Demeke Shumeye ;
Sa'ad, Umar ;
Nhu-Ngoc Dao ;
Na, Woongsoo ;
Cho, Sungrae .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (02) :1071-1120
[7]   Sliding-Window-Based RNC Scheme in UAV Multicasting: Performance Analysis and Network Optimization [J].
Li, Bin ;
Guo, Xianzhen ;
Cong, Jiayi ;
Zhang, Ruonan .
IEEE INTERNET OF THINGS JOURNAL, 2021, 9 (14) :12111-12124
[8]   Reinforcement Learning Based Energy-Efficient Fast Routing for FANETs [J].
Li, Jieling ;
Xiao, Liang ;
Qi, Xuchen ;
Lv, Zefang ;
Chen, Qiaoxin ;
Liu, Yong-Jin .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (11) :7063-7076
[9]   Maintaining Links in the Highly Dynamic FANET Using Deep Reinforcement Learning [J].
Qiu, Xiulin ;
Yang, Yuwang ;
Xu, Lei ;
Yin, Jun ;
Liao, Zhenqiang .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (03) :2804-2818
[10]   Caterpillar RLNC (CRLNC): A Practical Finite Sliding Window RLNC Approach [J].
Wunderlich, Simon ;
Gabriel, Frank ;
Pandi, Sreekrishna ;
Fitzek, Frank H. P. ;
Reisslein, Martin .
IEEE ACCESS, 2017, 5 :20183-20197