Calderón-Zygmund type estimate for the singular parabolic double-phase system

被引:0
作者
Kim, Wontae [1 ]
机构
[1] Uppsala Univ, Dept Math, POB 480, S-75106 Uppsala, Sweden
关键词
Parabolic double-phase systems; Calder & oacute; n-Zygmund type estimate; ELLIPTIC-EQUATIONS; HIGHER INTEGRABILITY; Q-GROWTH; REGULARITY; GRADIENT; MINIMIZERS;
D O I
10.1016/j.jmaa.2025.129593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the local Calder & oacute;n-Zygmund type estimate for the singular parabolic double-phase system. The proof covers the counterpart p < 2 of the result in [23]. Phase analysis is employed to determine an appropriate intrinsic geometry for each phase. Comparison estimates and scaling invariant properties for each intrinsic geometry are the main techniques to obtain the main estimate. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:33
相关论文
共 34 条
[11]   Bounded Minimisers of Double Phase Variational Integrals [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) :219-273
[12]   Regularity for Double Phase Variational Problems [J].
Colombo, Maria ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) :443-496
[13]  
Cupini G, 2024, ARCH RATION MECH AN, V248, DOI 10.1007/s00205-024-01982-0
[14]   A BORDERLINE CASE OF CALDERON-ZYGMUND ESTIMATES FOR NONUNIFORMLY ELLIPTIC PROBLEMS [J].
De Filippis, C. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2020, 31 (03) :455-477
[15]   Regularity for Double Phase Problems at Nearly Linear Growth [J].
De Filippis, Cristiana ;
Mingione, Giuseppe .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2023, 247 (05)
[16]   Regularity for multi-phase problems at nearly linear growth [J].
De Filippis, Filomena ;
Piccinini, Mirco .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 410 :832-868
[17]   ON THE HIGHER INTEGRABILITY OF THE GRADIENT OF WEAK SOLUTIONS OF CERTAIN DEGENERATE ELLIPTIC-SYSTEMS [J].
DIBENEDETTO, E ;
MANFREDI, J .
AMERICAN JOURNAL OF MATHEMATICS, 1993, 115 (05) :1107-1134
[18]  
DiBenedetto E., 1993, DEGENERATE PARABOLIC
[19]   Sharp regularity for functionals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 204 (01) :5-55
[20]   Scalar minimizers with fractal singular sets [J].
Fonseca, I ;
Maly, J ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 172 (02) :295-307