Calderón-Zygmund type estimate for the singular parabolic double-phase system

被引:0
作者
Kim, Wontae [1 ]
机构
[1] Uppsala Univ, Dept Math, POB 480, S-75106 Uppsala, Sweden
关键词
Parabolic double-phase systems; Calder & oacute; n-Zygmund type estimate; ELLIPTIC-EQUATIONS; HIGHER INTEGRABILITY; Q-GROWTH; REGULARITY; GRADIENT; MINIMIZERS;
D O I
10.1016/j.jmaa.2025.129593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses the local Calder & oacute;n-Zygmund type estimate for the singular parabolic double-phase system. The proof covers the counterpart p < 2 of the result in [23]. Phase analysis is employed to determine an appropriate intrinsic geometry for each phase. Comparison estimates and scaling invariant properties for each intrinsic geometry are the main techniques to obtain the main estimate. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:33
相关论文
共 34 条
[1]   Gradient estimates for a class of parabolic systems [J].
Acerbi, Emilio ;
Mingione, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) :285-320
[2]   SELF-IMPROVING PROPERTIES OF VERY WEAK SOLUTIONS TO DOUBLE PHASE SYSTEMS [J].
Baasandorj, Sumiya ;
Byun, Sun-Sig ;
Kim, Wontae .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, :8733-8768
[3]   The Cauchy-Dirichlet problem for a general class of parabolic equations [J].
Baroni, Paolo ;
Lindfors, Casimir .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (03) :593-624
[4]   Harnack inequalities for double phase functionals [J].
Baroni, Paolo ;
Colombo, Maria ;
Mingione, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :206-222
[5]   Parabolic Systems with p, q-Growth: A Variational Approach [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 210 (01) :219-267
[6]   Parabolic equations in Reifenberg domains [J].
Byun, SS ;
Wang, LH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 176 (02) :271-301
[7]   Nonlinear elliptic equations with BMO coefficients in Reifenberg domains [J].
Byun, Sun-Sig ;
Wang, Lihe ;
Zhou, Shulin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 250 (01) :167-196
[8]   Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains [J].
Byun, Sun-Sig ;
Ok, Jihoon ;
Ryu, Seungjin .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (11) :4290-4326
[9]  
Caffarelli LA, 1998, COMMUN PUR APPL MATH, V51, P1
[10]   Calderon-Zygmund estimates and non-uniformly elliptic operators [J].
Colombo, Maria ;
Mingione, Giuseppe .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) :1416-1478