Biogas upgrading by in-situ biomethanation in high-rate anaerobic bioreactor treating biofuel condensate wastewater

被引:1
作者
Nguyen, P. Y. [1 ]
Ferreira, Ana Lucia Morgado [2 ]
Santiago, Pacheco-Ruiz [2 ]
van der Zee, Frank [2 ]
Lacroix, Sebastien [3 ]
Tian, Jiang-Hao [3 ]
Lens, Piet N. L. [1 ]
机构
[1] Univ Galway, Univ Rd, Galway H91 TK33, Ireland
[2] Veolia Water Technol Techno Ctr, Biothane, Tanthofdreef 21, NL-2623 EW Delft, Netherlands
[3] Veolia Environm Res & Innovat, F-78603 Maisons laffitte, France
基金
爱尔兰科学基金会;
关键词
In-situ biomethanation; Expanded granular sludge bed (EGSB); Wastewater treatment; Hydrogen; MICROBIAL COMMUNITY; DIGESTION; H-2; METHANOGENESIS; PARAMETERS; REACTORS; ACETATE; CO;
D O I
10.1016/j.renene.2025.123113
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study aims to explore the potential integration of H-2-driven in-situ biomethanation into existing high-rate industrial anaerobic wastewater treatment. It specifically addresses key challenges such as hydrogen loading rates, pH effects (6.7-7.5), and gas diffusion devices. The study was conducted through a continuous long-term operation (>350 days) of an expanded granular sludge bed reactor treating biofuel condensate wastewater at high organic loading rates. The membrane gas exchanger exhibited the best performance compared to coarse- and fine-bubble diffusers, achieving a maximum H-2 utilization efficiency of 99 %. No inhibition of methanogens was observed within the tested pH range, and the long-term (>350 days) process stability of continuous in-situ biomethanation was demonstrated despite operational changes. The best biogas composition (92:4:4 for CH4:CO2:H-2) was obtained at pH 7.5 with a H-2 feeding rate of 4.39 NLH2.L-1.d(-1) and a high volumetric loading rate (VLR) of 13 g(COD).Lr-1.d(-1). An increase in syntrophic bacteria, such as Geobacter and Syntrophomonas, may suggest the stimulation of DIET-mediated methanogenesis, potentially enhancing biogas upgrading.
引用
收藏
页数:11
相关论文
共 58 条
[21]   Relationship between Abundance and Specific Activity of Bacterioplankton in Open Ocean Surface Waters [J].
Hunt, Dana E. ;
Lin, Yajuan ;
Church, Matthew J. ;
Karl, David M. ;
Tringe, Susannah G. ;
Izzo, Lisa K. ;
Johnson, Zackary I. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2013, 79 (01) :177-184
[22]  
IEA, 2020, Outlook for biogas and biomethane: Prospects for organic growth
[23]   Protein-based stable isotope probing [J].
Jehmlich, Nico ;
Schmidt, Frank ;
Taubert, Martin ;
Seifert, Jana ;
Bastida, Felipe ;
von Bergen, Martin ;
Richnow, Hans-Hermann ;
Vogt, Carsten .
NATURE PROTOCOLS, 2010, 5 (12) :1957-1966
[24]   H2 gas-liquid mass transfer: A key element in biological Power-to-Gas methanation [J].
Jensen, M. B. ;
Ottosen, L. D. M. ;
Kofoed, M. V. W. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 147
[25]   Anaerobic granular sludge for simultaneous biomethanation of synthetic wastewater and CO with focus on the identification of CO-converting microorganisms [J].
Jing, Yuhang ;
Campanaro, Stefano ;
Kougias, Panagiotis ;
Treu, Laura ;
Angelidaki, Irini ;
Zhang, Shicheng ;
Luo, Gang .
WATER RESEARCH, 2017, 126 :19-28
[26]   Improving Anaerobic Digestion of Sewage Sludge by Hydrogen Addition: Analysis of Microbial Populations and Process Performance [J].
Judith Martinez, Elia ;
Sotres, Ana ;
Arenas, Cristian B. ;
Blanco, Daniel ;
Martinez, Olegario ;
Gomez, Xiomar .
ENERGIES, 2019, 12 (07)
[27]   Recent advances in methanogenesis through direct interspecies electron transfer via conductive materials: A molecular microbiological perspective [J].
Kang, Hyun-Jin ;
Lee, Sang-Hoon ;
Lim, Tae-Guen ;
Park, Jeong-Hoon ;
Kim, Boram ;
Buffiere, Pierre ;
Park, Hee-Deung .
BIORESOURCE TECHNOLOGY, 2021, 322
[28]  
Kates M., 1993, The Biochemistry of Archaea
[29]  
Kleerebezem R, 2000, BIOTECHNOL BIOENG, V67, P529, DOI 10.1002/(SICI)1097-0290(20000305)67:5<529::AID-BIT4>3.0.CO
[30]  
2-Q