3D inversion of airborne transient electromagnetic data using deep learning

被引:0
作者
Zhang, Shuowei [1 ]
Liu, Rui [1 ]
Feng, Hao [1 ]
Wang, Zhihong [2 ]
Liu, Shangbin [1 ]
Luo, Yan [2 ]
Zheng, Ziqiang [1 ]
Sun, Huaifeng [1 ]
机构
[1] Shandong Univ, Inst Geotech & Underground Engn, Jinan 250061, Shandong, Peoples R China
[2] Airborne Survey & Remote Sensing Ctr Nucl Ind, Shijiazhuang 050002, Hebei, Peoples R China
关键词
3D inversion; Airborne transient electromagnetic method; Deep learning; ATEM3D-net; 3-DIMENSIONAL INVERSION;
D O I
10.1016/j.jappgeo.2025.105737
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
One-dimensional (1D) airborne transient electromagnetic (ATEM) inversion is still the most popular method applied in field data because the conventional three-dimensional (3D) method requires forward calculations during the inversion process, which is time-consuming, and the inversion results are highly influenced by the initial model. Moreover, the conventional 3D inversion process is unstable and susceptible to converging to local optima. However, the true underground structure is 3D, we need a 3D inversion to study the structure details. We present a novel deep-learning framework, ATEM3D-Net, designed for the 3D inversion of ATEM data. ATEM3DNet leverages an encoder-decoder architecture that integrates 3D U-Net with ConvLSTM to perform an end-toend mapping from electromagnetic response data to subsurface resistivity models, where the ConvLSTM can learn the spatiotemporal dependencies of ATEM data to obtain better inversion results. Furthermore, we optimize the network training strategy to make the network converge to the global optimal. We evaluate the performance of ATEM3D-Net using both forward modeling data and field model synthetic data, demonstrating its superior ability to handle noise and its generalization across different geological settings.
引用
收藏
页数:15
相关论文
共 45 条
[1]   Geophysical data provide three dimensional insights into porphyry copper systems in the Silverton caldera, Colorado, USA [J].
Anderson, Eric D. ;
Yager, Douglas B. ;
Deszcz-Pan, Maryla ;
Hoogenboom, Bennett E. ;
Rodriguez, Brian D. ;
Smith, Bruce D. .
ORE GEOLOGY REVIEWS, 2023, 152
[2]   (Quasi-)Real-Time Inversion of Airborne Time-Domain Electromagnetic Data via Artificial Neural Network [J].
Bai, Peng ;
Vignoli, Giulio ;
Viezzoli, Andrea ;
Nevalainen, Jouni ;
Vacca, Giuseppina .
REMOTE SENSING, 2020, 12 (20) :1-11
[3]   Mapping and predicting electrical conductivity variations across southern England using airborne electromagnetic data [J].
Beamish, David ;
White, James C. .
QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 2012, 45 (01) :99-110
[4]   Machine learning for data-driven discovery in solid Earth geoscience [J].
Bergen, Karianne J. ;
Johnson, Paul A. ;
de Hoop, Maarten V. ;
Beroza, Gregory C. .
SCIENCE, 2019, 363 (6433) :1299-+
[5]  
Colombo D, 2021, GEOPHYSICS, V86, pE209, DOI [10.1190/GEO2020-0760.1, 10.1190/geo2020-0760.1]
[6]  
Cox LH, 2012, GEOPHYSICS, V77, pWB59, DOI [10.1190/geo2011-0370.1, 10.1190/GEO2011-0370.1]
[7]   Inference of lithologic distributions in an alluvial aquifer using airborne transient electromagnetic surveys [J].
Dickinson, Jesse E. ;
Pool, D. R. ;
Groom, R. W. ;
Davis, L. J. .
GEOPHYSICS, 2010, 75 (04) :WA149-WA161
[8]   New regional stratigraphic insights from a 3D geological model of the Nasia sub-basin, Ghana, developed for hydrogeological purposes and based on reprocessed B-field data originally collected for mineral exploration [J].
Dzikunoo, Elikplim Abla ;
Vignoli, Giulio ;
Jorgensen, Flemming ;
Yidana, Sandow Mark ;
Banoeng-Yakubo, Bruce .
SOLID EARTH, 2020, 11 (02) :349-361
[9]   Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity [J].
Farquharson, CG ;
Oldenburg, DW ;
Routh, PS .
GEOPHYSICS, 2003, 68 (06) :1857-1869
[10]   Helicopter-borne transient electromagnetics in high-latitude environments: An application in the McMurdo Dry Valleys, Antarctica [J].
Foley, Neil ;
Tulaczyk, Slawek ;
Auken, Esben ;
Schamper, Cyril ;
Dugan, Hilary ;
Mikucki, Jill ;
Virginia, Ross ;
Doran, Peter .
GEOPHYSICS, 2016, 81 (01) :WA87-WA99