Strong H\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {H}}$$\end{document}-tensors play a significant role in identifying the positive definiteness of an even-order real symmetric tensor. In this paper, first, an improved iterative algorithm is proposed to determine whether a given tensor is a strong H\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {H}}$$\end{document}-tensor, and the validity of the iterative algorithm is proved theoretically. Second, the iterative algorithm is employed to identify the positive definiteness of an even-order real symmetric tensor. Finally, numerical examples are presented to illustrate the advantages of the proposed algorithm.