An Improved Iterative Algorithm for Identifying Strong H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}-Tensors

被引:0
作者
Wenbin Gong [1 ]
Yan Li [1 ]
Yaqiang Wang [1 ]
机构
[1] Baoji University of Arts and Sciences,School of Mathematics and Information Science
关键词
Strong ; -tensors; Iterative algorithm; Positive diagonal matrix; Symmetric tensors; 15B99; 15A69; 15A39;
D O I
10.1007/s42967-023-00362-x
中图分类号
学科分类号
摘要
Strong H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}-tensors play a significant role in identifying the positive definiteness of an even-order real symmetric tensor. In this paper, first, an improved iterative algorithm is proposed to determine whether a given tensor is a strong H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document}-tensor, and the validity of the iterative algorithm is proved theoretically. Second, the iterative algorithm is employed to identify the positive definiteness of an even-order real symmetric tensor. Finally, numerical examples are presented to illustrate the advantages of the proposed algorithm.
引用
收藏
页码:1598 / 1614
页数:16
相关论文
empty
未找到相关数据