A dual projection method for semantic segmentation of large-scale point clouds

被引:0
作者
Zhao, Haoying [1 ]
Zhou, Aimin [1 ]
机构
[1] East China Normal Univ, Sch Comp Sci & Technol, Shanghai 200062, Peoples R China
关键词
Point cloud; Semantic segmentation; Parallel projection; Autonomous driving system;
D O I
10.1007/s00371-025-03916-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
3D point cloud semantic segmentation is an essential task for enhancing high-level perception in autonomous platforms. The projection-based method is an efficient approach since central projection can transform sparse point clouds into dense pseudo-2D image. Central projection suffers from scale imbalances, posing challenges for perceiving distant objects. We utilized parallel projection to adjust the distribution and scale of targets, enabling neural networks to better extract information from distant objects. We designed a joint training and inference framework to combine the perspectives of central projection and parallel projection, enhancing the final segmentation results. Our method achieves an mAcc of 89.7% and an mIoU of 59.3% on the SemanticKITTI validation set. On the SemanticKITTI test set, we achieve an mAcc of 89.0% and an mIoU of 58.7%. The experiments show that our method achieves superior segmentation performance, especially for distant targets and categories such as motor vehicles, distant road surfaces and column-like structures.
引用
收藏
页数:20
相关论文
共 50 条
[1]  
Ahmed SM, 2018, IEEE INT C INT ROBOT, P7350, DOI 10.1109/IROS.2018.8593910
[2]   Multi Projection Fusion for Real-time Semantic Segmentation of 3D LiDAR Point Clouds [J].
Alnaggar, Yara Ali ;
Afifi, Mohamed ;
Amer, Karim ;
ElHelw, Mohamed .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, :1799-1808
[3]   3D-MiniNet: Learning a 2D Representation From Point Clouds for Fast and Efficient 3D LIDAR Semantic Segmentation [J].
Alonso, Inigo ;
Riazuelo, Luis ;
Montesano, Luis ;
Murillo, Ana C. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) :5432-5439
[4]   RangeViT: Towards Vision Transformers for 3D Semantic Segmentation in Autonomous Driving [J].
Ando, Angelika ;
Gidaris, Spyros ;
Bursuc, Andrei ;
Puy, Gilles ;
Boulch, Alexandre ;
Marlet, Renaud .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, :5240-5250
[5]   DGCNN: A convolutional neural network over large-scale labeled graphs [J].
Anh Viet Phan ;
Minh Le Nguyen ;
Yen Lam Hoang Nguyen ;
Lam Thu Bui .
NEURAL NETWORKS, 2018, 108 :533-543
[6]   Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset [J].
Behley, Jens ;
Garbade, Martin ;
Milioto, Andres ;
Quenzel, Jan ;
Behnke, Sven ;
Gall, Juergen ;
Stachniss, Cyrill .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2021, 40 (8-9) :959-967
[7]  
Beltrán J, 2018, IEEE INT C INTELL TR, P3517, DOI 10.1109/ITSC.2018.8569311
[8]  
Chen C., 2023, The Visual Computer, P1
[9]   MVLidarNet: Real-Time Multi-Class Scene Understanding for Autonomous Driving Using Multiple Views [J].
Chen, Ke ;
Oldja, Ryan ;
Smolyanskiy, Nikolai ;
Birchfield, Stan ;
Popov, Alexander ;
Wehr, David ;
Eden, Ibrahim ;
Pehserl, Joachim .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :2288-2294
[10]  
Chenfeng Xu, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12373), P1, DOI 10.1007/978-3-030-58604-1_1