Efficient Ion Migration and Stable Interface Chemistry of PVDF-Based Electrolytes for Solid-State Lithium Metal Batteries

被引:0
作者
Fan, Kaibo [1 ]
Wang, Biao [1 ]
Chen, Jie [1 ]
Cao, Kai [1 ]
Huang, Haozhong [1 ]
Zhu, Zhongheng [1 ]
Zhang, Qichen [1 ]
Fu, Xiaowu [1 ]
Sun, Ling [2 ,3 ]
Yuan, Jiren [1 ]
Zhao, Yong [1 ]
Hu, Zhengguang [1 ]
Wang, Li [1 ]
机构
[1] Nanchang Univ, Sch Phys & Mat Sci, Jiangxi Prov Key Lab Photodetectors, Nanchang 330031, Peoples R China
[2] Chongqing Mat Res Inst Co Ltd, Chongqing 400707, Peoples R China
[3] Natl Engn Res Ctr Instrument Funct Mat, Chongqing 400707, Peoples R China
关键词
bond dipole moments; interface failures; Li+-interaction environment; PVDF-based electrolytes; POLYMER ELECTROLYTES; COMPOSITE ELECTROLYTES; CONDUCTIVITY; SIO;
D O I
10.1002/smll.202501124
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Poly(vinylidene fluoride) (PVDF)-based electrolytes with "Li salt-polymer-trace residual solvent" configuration have shown great potential in solid-state lithium metal batteries (SSLMBs). However, the interface failure initiated by the residual solvent and the sluggish Li+ migration kinetics caused by the intricacy of the Li+-interaction environment severely precludes the large-scale commercial application of PVDF-based electrolytes in SSLMBs. Herein, the PVDF-based electrolytes are fabricated by compositing the PVDF matrix and sand-ground silicon monoxide (SiO-a) fillers with silicon monoxide/silicon-suboxide/silicon-dioxide (Si/SiOx(0<x<2)/SiO2)heterostructure. Results show that SiO-a not only forcefully anchors the highly reactive N, N-dimethylformamide (DMF) molecules, significantly alleviating the side reactions at the electrode-electrolyte interface, but also the anchored DMF molecule dipole exhibits stronger bond dipole moment (C & boxH; O; 7.1 x 10(-30) C m) than PVDF (C & horbar;F; 3.6 x 10(-30) C m), thus weakens the ion-dipole interaction of Li+<middle dot><middle dot><middle dot>F, making Li+-hopping easily along polymer chains. Consequently, the obtained electrolyte exhibits dramatic electrochemical properties, including a superior ionic conductivity (0.39 mS cm(-1)) and sufficient Li+ transference number (0.54). Additionally, the LFP||Li battery presents an outstanding performance at the wide temperature range of -10-60 degrees C. Even at a high mass loading of approximate to 11 mg cm(-2), the LFP||Li battery also delivers an impressive specific capacity (156.9 mAh g(-1)) along with average coulombic efficiency (99.8%).
引用
收藏
页数:11
相关论文
共 54 条
[1]   Dielectric Filler-Induced Hybrid Interphase Enabling Robust Solid-State Li Metal Batteries at High Areal Capacity [J].
An, Xufei ;
Liu, Yang ;
Yang, Ke ;
Mi, Jinshuo ;
Ma, Jiabin ;
Zhang, Danfeng ;
Chen, Likun ;
Liu, Xiaotong ;
Guo, Shaoke ;
Li, Yuhang ;
Ma, Yuetao ;
Liu, Ming ;
He, Yan-Bing ;
Kang, Feiyu .
ADVANCED MATERIALS, 2024, 36 (13)
[2]   A STUDY OF AMORPHOUS SIO [J].
BRADY, GW .
JOURNAL OF PHYSICAL CHEMISTRY, 1959, 63 (07) :1119-1120
[3]   Is It Possible to Obtain Solvent-Free, Li+-Conducting Solid Electrolytes Based on Pure PVdF? Comment on "Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes" [J].
Callegari, Daniele ;
Bonizzoni, Simone ;
Berbenni, Vittorio ;
Quartarone, Eliana ;
Mustarelli, Piercarlo .
ADVANCED MATERIALS, 2020, 32 (14)
[4]   Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications [J].
Chen, Fangfang ;
Wang, Xiaoen ;
Armand, Michel ;
Forsyth, Maria .
NATURE MATERIALS, 2022, 21 (10) :1175-+
[5]   In situ construction of Li3N-enriched interface enabling ultra-stable solid-state LiNi0.8Co0.1Mn0.1O2/lithium metal batteries [J].
Chen, Likun ;
Gu, Tian ;
Ma, Jiabin ;
Yang, Ke ;
Shi, Peiran ;
Biao, Jie ;
Mi, Jinshuo ;
Liu, Ming ;
Lv, Wei ;
He, Yan-Bing .
NANO ENERGY, 2022, 100
[6]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[7]   Influence of Oxygen Content on the Structural Evolution of SiOx Thin-Film Electrodes with Subsequent Lithiation/Delithiation Cycles [J].
Cho, Jung Hwi ;
Xiao, Xingcheng ;
Verbrugge, Mark W. ;
Sheldon, Brian W. .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (11) :13293-13306
[8]   In situ formation of polymer-inorganic solid-electrolyte interphase for stable polymeric solid-state lithium-metal batteries [J].
Deng, Tao ;
Cao, Longsheng ;
He, Xinzi ;
Li, Ai-Min ;
Li, Dan ;
Xu, Jijian ;
Liu, Sufu ;
Bai, Panxing ;
Jin, Ting ;
Ma, Lin ;
Schroeder, Marshall A. ;
Fan, Xiulin ;
Wang, Chunsheng .
CHEM, 2021, 7 (11) :3052-3068
[9]   An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries [J].
Didwal, Pravin N. ;
Singhbabu, Y. N. ;
Verma, Rakesh ;
Sung, Bong-Jun ;
Lee, Gwi-Hak ;
Lee, Jong-Sook ;
Chang, Duck Rye ;
Park, Chan-Jin .
ENERGY STORAGE MATERIALS, 2021, 37 :476-490
[10]   Efficient ion transport mode and stable Li plus -interface induced by the introduction of HA-SiO2 in PVDF-based electrolytes for solid-state lithium metal batteries [J].
Fan, Kaibo ;
Zhong, Shuying ;
Hu, Zhengguang ;
Xu, Bo ;
Zhao, Yong ;
Sun, Ling ;
Zhou, Zhehui ;
Sun, Baozhen ;
Tan, Long ;
Wang, Li .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 :641-651