Fixed point results on nonlinear composition operators A∘B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\circ B$\end{document} and applications

被引:0
作者
Bibo Zhou [1 ]
Yiping Du [1 ]
机构
[1] Lyuliang University,Department of Mathematics and Artificial Intelligence
关键词
Fixed point theory; -Laplacian operator; Fractional differential equations; Existence-uniqueness; 34B18; 26A33; 34B27;
D O I
10.1186/s13660-025-03313-7
中图分类号
学科分类号
摘要
This paper investigates a class of composition operators: the nonlinear operator T=A∘B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T=A\circ B$\end{document} and the sum-type operator T=A∘B+C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T=A\circ B+C$\end{document}, where A, B, and C are either single or bivariate operators. Here, “∘” denotes the composition operation between operators A and B. By applying cone theory and monotone iterative techniques, we establish the existence and uniqueness of fixed points of T within the set P. Additionally, we develop two successively monotone iterative sequences to approximate the unique positive fixed point. Finally, by leveraging the fixed point theorem for composition operators derived in this paper, we analyze a class of boundary value problems for Riemann-Liouville fractional differential equations involving p-Laplacian operators.
引用
收藏
相关论文
empty
未找到相关数据