Next-generation Li1.3+xAl0.3AsxTi1.7-x(PO4)3 NASICON electrolytes with outstanding ionic conductivity performance

被引:0
作者
Taoussi, S. [1 ,2 ]
Ouaha, A. [1 ]
Naji, M. [3 ,4 ]
Hoummada, K. [5 ]
Lahmar, A. [6 ]
Alami, J. [7 ]
Manoun, B. [7 ]
El Bouari, A.
Frielinghaus, H. [8 ]
Bih, L. [1 ]
机构
[1] Moulay Ismail Univ, Mat & Proc Dept, Lab Sci & Profess Engineer, ENSAM Meknes, Meknes, Morocco
[2] Univ Hassan II Casablanca, Fac Sci Ben Msik, Lab Phys Chem Mat & Catalysis LCPMC, Casablanca, Morocco
[3] Univ Sidi Mohamed Ben Abdellah, Fac Sci Dhar EL Mahraz, Lab Appl Phys Informat & Stat LPAIS, BP 1796, Fez Atlas, Morocco
[4] Mohammed VI Polytech Univ UM6P, Lab Inorgan Mat Sustainable Energy Technol, Lot 660 Hay Moulay Rachid, Ben Guerir, Morocco
[5] CNRS Aix Marseille Univ, Fac Sci St Jerome, IM2NP, Marseille, France
[6] Univ Picardie, Lab Phys Mat Condensee LPMC, Pole Sci, F-80039 Amiens 1, France
[7] Mohammed VI Polytech Univ, Mat Sci & Nanoengn Dept, Ben Guerir, Morocco
[8] Forschungszentrum Julich, Julich Ctr Neutron Scattering JCNS MLZ 4, Lichtenbergstr 1, D-85747 Garching, Germany
关键词
Solid electrolyte; Nasicon structure; Ionic conductivity; Electronic conductivity; ELECTRICAL-PROPERTIES; SOLID-ELECTROLYTE; GLASS-CERAMICS; LITHIUM; SYSTEM; LATP; FABRICATION; CONDUCTORS; ANODE;
D O I
10.1016/j.jpowsour.2025.237103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NASICON-type solid electrolytes feature prominently in the improved safety and energy density of solid-state lithium batteries (ASSLBs). Achieving high ionic conductivity in these electrolytes is key to optimizing their performance. In this study, we introduced a new class of NASICON-type materials by doping arsenic into the Li1.3Al0.3Ti1.7(PO4)(3) framework, creating a series of Li1.3+xAl0.3AsxTi1.7-x(PO4)(3) phases with varying arsenic content (x = 0, 0.1, 0.2, 0.3), synthesized using the standard solid-state reaction method. X-ray diffraction confirmed the successful formation of the Li1.3+xAl0.3AsxTi1.7-x(PO4)(3) phases, which was further validated by Rietveld refinement. Structural analyses through FT-IR, Raman spectroscopy, NMR, and ICP-AES studies validate the effective incorporation of arsenic into the lattice. Among the different compositions, Li1.5As0.2Al0.3Ti1.5(PO4)(3) phase stood out due to its high relative density of 89 % and its pore-free microstructure, as observed through scanning electron microscopy results, revealing the largest grain and crystallite size. Notably, doping with arsenic resulted in a significant enhancement in ionic conductivity, increasing from 5.34 x10(-5) Omega(-1) cm(-1) for Li1.3Al0.3Ti1.7(PO4)(3) to 8.57 x10(-4) Omega(-1) cm(-1) for the Li1.5As0.2Al0.3Ti1.5(PO4)(3) at 25 degrees C. With a lithium transference number of 0.99, and a conduction mechanism largely unaffected by changes in temperature or composition, demonstrating its suitability as a promising candidate for solid electrolyte applications.
引用
收藏
页数:14
相关论文
共 65 条
  • [1] Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging
    Antonio Gonzalez-Gomez, Manuel
    Belderbos, Sarah
    Yanez-Vilar, Susana
    Pineiro, Yolanda
    Cleeren, Frederik
    Bormans, Guy
    Deroose, Christophe M.
    Gsell, Willy
    Himmelreich, Uwe
    Rivas, Jose
    [J]. NANOMATERIALS, 2019, 9 (11)
  • [2] Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3 and LiTi2-xZrx(PO4)3 materials followed by NMR and impedance spectroscopy
    Arbi, K.
    Rojo, J. M.
    Sanz, J.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (13-15) : 4215 - 4218
  • [3] Study of Structural and Electrical Properties of CeO2 Added Li1.3Al0.3Ti1.7(PO4)3 Ceramic for Lithium-Ion Battery Application
    Bansod, Swati G.
    Deshpande, A. V.
    [J]. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2023, 12 (11)
  • [4] Conductivity study and correlated barrier hopping (CBH) conduction mechanism in diphosphate compound
    Ben Taher, Y.
    Oueslati, A.
    Maaloul, N. K.
    Khirouni, K.
    Gargouri, M.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 120 (04): : 1537 - 1543
  • [5] Vibrational spectroscopic study of lithium intercalation into LiTi2(PO4)3
    Burba, Christopher M.
    Frech, Roger
    [J]. SOLID STATE IONICS, 2006, 177 (17-18) : 1489 - 1494
  • [6] Comparative study of lithium ion conductors in the system Li1-xAlxA2-xIV (PO4)3 with AIV = Ti or Ge and 0≤x≤0.7 for use as Li+ sensitive membranes
    Cretin, M
    Fabry, P
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (16) : 2931 - 2940
  • [7] Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries
    Das, Arya
    Sahu, Satyaswini
    Mohapatra, Mamata
    Verma, Sarika
    Bhattacharyya, Aninda J.
    Basu, Suddhasatwa
    [J]. MATERIALS TODAY ENERGY, 2022, 29
  • [8] Nonflammable organic electrolytes for high-safety lithium-ion batteries
    Deng, Kuirong
    Zeng, Qingguang
    Wang, Da
    Liu, Zheng
    Wang, Guangxia
    Qiu, Zhenping
    Zhang, Yangfan
    Xiao, Min
    Meng, Yuezhong
    [J]. ENERGY STORAGE MATERIALS, 2020, 32 (32) : 425 - 447
  • [9] Electrical conductivity and modulus formulation in zinc modified bismuth boro-tellurite glasses
    Dhankhar, S.
    Kundu, R. S.
    Dult, M.
    Murugavel, S.
    Punia, R.
    Kishore, N.
    [J]. INDIAN JOURNAL OF PHYSICS, 2016, 90 (09) : 1033 - 1040