A 3D end-to-end multi-task learning network for predicting lymph node metastasis at multiple nodal stations in gastric cancer

被引:0
作者
Zhu, Hao [1 ]
Yang, Zhi [2 ]
Zheng, Chang [1 ,3 ]
Jiang, Ping [1 ,3 ]
Fang, Yi [1 ,3 ]
Xu, Yuejie [1 ,3 ]
Xiang, Ying [1 ,3 ]
Xu, En [2 ]
Wang, Lei [1 ,3 ]
Bao, Shanhua [2 ]
Guan, Wenxian [2 ]
Zou, Xiaoping [1 ,3 ,4 ]
机构
[1] Nanjing Med Univ, Dept Gastroenterol, Drum Tower Clin Med Coll, Nanjing, Peoples R China
[2] Nanjing Univ, Nanjing Drum Tower Hosp, Dept Gen Surg, Affiliated Hosp,Med Sch, Nanjing, Peoples R China
[3] Nanjing Univ, Nanjing Drum Tower Hosp, Dept Gastroenterol, Affiliated Hosp,Med Sch, Nanjing, Peoples R China
[4] Taikang Xianlin DrumTower Hosp, Dept Gastroenterol, Nanjing 210000, Peoples R China
基金
中国国家自然科学基金;
关键词
Gastric cancer; Lymph node metastasis; Tumor segmentation; Deep learning; Multi-task learning; RADIOMIC NOMOGRAM; RECURRENCE; CLASSIFICATION; SEGMENTATION; TUMOR;
D O I
10.1016/j.bspc.2025.107802
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Gastric cancer remains a global health concern with high incidence and mortality rates. Accurate preoperative prediction of lymph node (LN) metastasis is crucial for staging, treatment planning, and prognosis. This study introduces a novel 3D end-to-end lymph node metastasis multi-task learning network (LMML-net) designed to predict LN metastasis across multiple nodal stations in gastric cancer. We analyzed a cohort of 293 patients who underwent gastrectomy with LN dissection. Preoperative CT scans, conducted within two weeks before surgery, were utilized. The LMML-net integrates tumor segmentation and LN metastasis prediction, employing a 3D attention-unet for tumor segmentation and a multi-task learning approach to address metastasis at different nodal stations. LMML-net demonstrated robust predictive performance, achieving AUCs of 0.813, 0.820, and 0.805 for total LN metastasis in training, testing, and validating cohorts, respectively. Notably, the model effectively addressed challenges posed by early gastric cancer and exhibited satisfactory results across various nodal stations. Visualization through GradCam highlighted significant contributions of both tumor and connective tissue areas to the predictions, enhancing the model's interpretability. The LMML-net exhibits strong predictive capabilities for LN metastasis across multiple stations in gastric cancer, including cases of early-stage disease. This innovative approach holds promise for guiding personalized preoperative treatments and surgical planning, potentially improving patient outcomes in gastric cancer management. Code and models will be available at: https://github.com/yangzhi028/LMML-net.
引用
收藏
页数:13
相关论文
共 39 条
[1]  
Abraham N., 2018, arXiv, DOI DOI 10.48550/ARXIV.1810.07842
[2]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[3]   Texture-based classification of different gastric tumors at contrast-enhanced CT [J].
Ba-Ssalamah, Ahmed ;
Muin, Dina ;
Schernthaner, Ruediger ;
Kulinna-Cosentini, Christiana ;
Bastati, Nina ;
Stift, Judith ;
Gore, Richard ;
Mayerhoefer, Marius E. .
EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (10) :E537-E543
[4]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[5]   Clinical Significance of the Pattern of Lymph Node Metastasis Depending on the Location of Gastric Cancer [J].
Bin Han, Ki ;
Jang, You Jin ;
Kim, Jong Han ;
Park, Sung Soo ;
Park, Seong Heum ;
Kim, Seung Joo ;
Mok, Young Jae ;
Kim, Chong Suk .
JOURNAL OF GASTRIC CANCER, 2011, 11 (02) :86-93
[6]   Risk assessment of lymph node metastasis in early gastric cancer: Establishment and validation of a Seven-point scoring model [J].
Cai, Fenglin ;
Dong, Yinping ;
Wang, Pengliang ;
Zhang, Li ;
Yang, Yang ;
Liu, Yong ;
Wang, Xuejun ;
Zhang, Rupeng ;
Liang, Han ;
Sun, Yan ;
Deng, Jingyu .
SURGERY, 2022, 171 (06) :1273-1280
[7]   Evaluation of Lymph Node Metastasis in Advanced Gastric Cancer Using Magnetic Resonance Imaging-Based Radiomics [J].
Chen, Wujie ;
Wang, Siwen ;
Dong, Di ;
Gao, Xuning ;
Zhou, Kefeng ;
Li, Jiaying ;
Lv, Bin ;
Li, Hailin ;
Wu, Xiangjun ;
Fang, Mengjie ;
Tian, Jie ;
Xu, Maosheng .
FRONTIERS IN ONCOLOGY, 2019, 9
[8]   A Fully Automated Multimodal MRI-Based Multi-Task Learning for Glioma Segmentation and IDH Genotyping [J].
Cheng, Jianhong ;
Liu, Jin ;
Kuang, Hulin ;
Wang, Jianxin .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) :1520-1532
[9]   Patterns of initial recurrence in completely resected gastric adenocarcinoma [J].
D'Angelica, M ;
Gonen, M ;
Brennan, MF ;
Turnbull, AD ;
Bains, M ;
Karpeh, MS .
ANNALS OF SURGERY, 2004, 240 (05) :808-816
[10]   Morbidity and mortality after D1 and D2 gastrectomy for cancer: Interim analysis of the Italian Gastric Cancer Study Group (IGCSG) randomised surgical trial [J].
Degiuli, M ;
Sasako, M ;
Calgaro, M ;
Garino, M ;
Rebecchi, F ;
Mineccia, M ;
Scaglione, D ;
Andreone, D ;
Ponti, A ;
Calvo, F .
EJSO, 2004, 30 (03) :303-308