On-Chip Array Fluorescent Sensor for High-Sensitivity Multi-Gas Detection

被引:1
作者
Xiahou, Yaorong [1 ,3 ,5 ]
Wang, Bo [2 ,7 ]
Li, He [2 ,7 ]
Shen, Zhijie [6 ]
Jiang, Yejing [6 ]
Li, Huizi [2 ,7 ]
Kerman, Sarp [3 ,4 ]
Wu, Fan [3 ,4 ]
Fu, Yanyan [2 ,7 ]
Wang, Teng [6 ]
Cheng, Jiangong [2 ,7 ]
Chen, Chang [1 ,2 ,3 ,4 ]
机构
[1] Shanghai Univ, Sch Microelect, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
[3] Shanghai Photon View Technol Co Ltd, Shanghai 200444, Peoples R China
[4] Shanghai Jiao Tong Univ, Ruijin Hosp, Inst Med Chips, Sch Med, Shanghai 201800, Peoples R China
[5] Shanghai Ind Technol Res Inst SITRI, Shanghai 201800, Peoples R China
[6] Mixosense Co Ltd, Suzhou 215400, Peoples R China
[7] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100039, Peoples R China
关键词
fluorescence; array; photonic integration; sensor; gas detection;
D O I
10.1021/acssensors.5c00460
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fluorescence array sensors provide an effective strategy to mitigate the cross-reactivity of single fluorescence materials by exploiting their high dimensionality and exceptional sensitivity. However, conventional fluorescent sensing arrays are often hindered by complex and bulky designs, resulting in low cost-effectiveness and severely restricting their potential for integration into compact sensing devices. Benefiting from its high integration advantage, photonic integration technology offers a promising solution for developing low-cost and miniaturized fluorescent gas sensor arrays. In this article, we present a novel fluorescence array sensor based on a silicon nitride photonic integration platform. This innovative device enables lab-on-chip functionality by integrating a microfluidic channel for efficient gas detection in a few square centimeters. The sensor demonstrates exceptional performance, accurately identifying six types of volatile organic compounds and achieving a remarkably low detection limit of 2.8 ppb for N-methylphenethylamine (MPEA). Notably, it exhibits high precision in detecting MPEA even within complex, high-concentration perfume mixtures. Moreover, this technology enables the expansion of the fluorescence array without increasing the sensor's volume, offering a practical solution for integrated fluorescence sensor array detection.
引用
收藏
页码:3647 / 3657
页数:11
相关论文
共 47 条
[1]   Ultra-sensitive refractive index gas sensor with functionalized silicon nitride photonic circuits [J].
Antonacci, Giuseppe ;
Goyvaerts, Jeroen ;
Zhao, Haolan ;
Baumgartner, Bettina ;
Lendl, Bernhard ;
Baets, Roel .
APL PHOTONICS, 2020, 5 (08)
[2]   An ionic liquid-based ratio fluorescent sensor for real-time visual monitoring of trace Hg2+ [J].
Che, Siying ;
Yin, Linlin ;
Fan, Yao ;
Shou, Qijia ;
Zhou, Chunsong ;
Fu, Haiyan ;
She, Yuanbin .
SENSORS AND ACTUATORS B-CHEMICAL, 2022, 360
[3]   Luminescence-based detection and identification of illicit drugs [J].
Chen, M. ;
Burn, P. L. ;
Shaw, P. E. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (19) :13244-13259
[4]   Trifluoromethyl-Substituted Perylene Diimides for Rapid and Sensitive Film-Based Fluorescence Detection of Methamphetamine and Cocaine Hydrochloride [J].
Chen, Ming ;
Chu, Ronan ;
Babazadeh, Mohammad ;
Kistemaker, Jos C. M. ;
Burn, Paul L. ;
Gentle, Ian R. ;
Shaw, Paul E. .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (18)
[5]   Utilizing Different Diffusion Mechanisms for Thin Film Fluorescence-Based Detection and Discrimination of Illicit Drug Vapors [J].
Chen, Ming ;
Burn, Paul L. ;
Shaw, Paul E. .
ACS SENSORS, 2023, 8 (12) :4607-4614
[6]   Perylene Diimide Based Fluorescent Sensors for Drug Simulant Detection: The Effect of Alkyl-Chain Branching on Film Morphology, Exciton Diffusion, Vapor Diffusion, and Sensing Response [J].
Chen, Ming ;
Chu, Ronan ;
Kistemaker, Jos C. M. ;
Burn, Paul L. ;
Gentle, Ian R. ;
Shaw, Paul E. .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (48) :56386-56396
[7]   A General Strategy for Food Traceability and Authentication Based on Assembly-Tunable Fluorescence Sensor Arrays [J].
Cheng, He ;
Liu, Tianyue ;
Tian, Jingsheng ;
An, Ruixuan ;
Shen, Yao ;
Liu, Mingxi ;
Yao, Zhiyi .
ADVANCED SCIENCE, 2024, 11 (28)
[8]   Fluorescent probes in public health and public safety [J].
Chu, Hao ;
Yang, Li ;
Yu, Le ;
Kim, Jungryun ;
Zhou, Jin ;
Li, Mingle ;
Kim, Jong Seung .
COORDINATION CHEMISTRY REVIEWS, 2021, 449
[9]  
Ettabib MA, 2024, NAT REV METHOD PRIME, V4, DOI [10.1038/s43586-024-00290-x, 10.1038/s43586-024-00290-x]
[10]   Fluorescent chemical sensors: applications in analytical, environmental, forensic, pharmaceutical, biological, and biomedical sample measurement, and clinical diagnosis [J].
Fakayode, Sayo O. ;
Lisse, Catrena ;
Medawala, Wathsala ;
Brady, Pamela Nicole ;
Bwambok, David K. ;
Anum, Davis ;
Alonge, Temitope ;
Taylor, Megan E. ;
Baker, Gary A. ;
Mehari, Tsdale F. ;
Rodriguez, Jason D. ;
Elzey, Brianda ;
Siraj, Noureen ;
Macchi, Samantha ;
Le, Thuy ;
Forson, Mavis ;
Bashiru, Mujeebat ;
Narcisse, Vivian E. Fernand E. ;
Grant, Cidya .
APPLIED SPECTROSCOPY REVIEWS, 2024, 59 (01) :1-89