Connectivity threshold for superpositions of Bernoulli random graphs. II

被引:0
作者
M. Bloznelis [1 ]
D. Marma [1 ]
R. Vaicekauskas [1 ]
机构
[1] Faculty of Mathematics and Informatics, Institute of Computer Science,Vilnius University, Didlaukio 47, Vilnius
关键词
affiliation network; complex network; connectivity threshold; random graph;
D O I
10.1007/s10474-025-01518-2
中图分类号
学科分类号
摘要
Let G1,.., Gm be independentBernoulli random subgraphs of the complete graph Kn havingrandom sizes X1,⋯,Xm∈{0,1,2,⋯} and edge densities Q1,.., Qm∈[0,1]. Letting n,m→+∞ we establish the connectivity threshold for the union ⋃i=1mGi defined on the vertex set of Kn. We show that (Formula presented.) where λn,m∗=lnn-1n∑i=1mEXi(1-(1-Qi)|Xi-1|). © The Author(s), under exclusive licence to Akadémiai Kiadó Zrt 2025.
引用
收藏
页码:352 / 375
页数:23
相关论文
共 15 条
  • [11] van der Hofstad R., Random Graphs and Complex Networks, 1, (2017)
  • [12] Ya?gan O., Zero-one laws for connectivity in inhomogeneous random key graphs, IEEE Trans. Inform. Theory, 62, pp. 4559-4574, (2016)
  • [13] Ya?gan O., Makowski A.M., Zero-one laws for connectivity in random key graphs, IEEE Trans. Inform. Theory, 58, pp. 2983-2999, (2012)
  • [14] Yang J., Leskovec J., Community-affiliation graph model for overlapping network community detection, 2012 IEEE 12th International Conference on Data Mining, pp. 1170-1175, (2012)
  • [15] Yang J., Leskovec J., Structure and overlaps of ground-truth communities in networks, ACM Trans. Intell. Syst. Technol, 5, pp. 1-35, (2014)