Connectivity threshold for superpositions of Bernoulli random graphs. II

被引:0
作者
M. Bloznelis [1 ]
D. Marma [1 ]
R. Vaicekauskas [1 ]
机构
[1] Faculty of Mathematics and Informatics, Institute of Computer Science,Vilnius University, Didlaukio 47, Vilnius
关键词
affiliation network; complex network; connectivity threshold; random graph;
D O I
10.1007/s10474-025-01518-2
中图分类号
学科分类号
摘要
Let G1,.., Gm be independentBernoulli random subgraphs of the complete graph Kn havingrandom sizes X1,⋯,Xm∈{0,1,2,⋯} and edge densities Q1,.., Qm∈[0,1]. Letting n,m→+∞ we establish the connectivity threshold for the union ⋃i=1mGi defined on the vertex set of Kn. We show that (Formula presented.) where λn,m∗=lnn-1n∑i=1mEXi(1-(1-Qi)|Xi-1|). © The Author(s), under exclusive licence to Akadémiai Kiadó Zrt 2025.
引用
收藏
页码:352 / 375
页数:23
相关论文
共 15 条
  • [1] Ardickas D., Bloznelis M., Connectivity threshold for superpositions of Bernoulli random graphs, arXiv:2306.08113v2, (2023)
  • [2] Bergman E., Leskela L., Connectivity of random hypergraphs with a given hyperedge size distribution, Discrete Applied Math, 357, pp. 1-13, (2024)
  • [3] Blackburn S.R., Gerke S., Connectivity of the uniform random intersection graph, Discrete Math, 309, pp. 5130-5140, (2009)
  • [4] Bloznelis M., Leskela L., Clustering and percolation on superpositions of Bernoulli random graphs, Random Structures Algorithms, 63, pp. 283-342, (2023)
  • [5] Devroye L., Fraiman N., Connectivity of inhomogeneous random graphs, Random Structures Algorithms, 45, pp. 408-420, (2014)
  • [6] Erdos P., Renyi A., On random graphs. I, Publ. Math. Debrecen, 6, pp. 290-297, (1959)
  • [7] Frieze A., Karonski M., Introduction to Random Graphs, (2015)
  • [8] Godehardt E., Jaworski J., Rybarczyk K., Random intersection graphs and classification, Advances in Data Analysis. Stud- ies in Classification, Data Analysis, and Knowledge Organization, pp. 67-74, (2007)
  • [9] Janson S., Luczak T., Rucinski A., Random Graphs, (2000)
  • [10] Rybarczyk K., Diameter, connectivity, and phase transition of the uniform random intersection graph, Discrete Math, 311, pp. 1998-2019, (2011)