ConvNeXt-2U: A 3-D Deep Learning-Based Segmentation Model for Unified and Automatic Segmentation of Lungs, Normal Liver and Tumors in Y-90 Radioembolization Dosimetry

被引:0
作者
Chen, Gefei [1 ,2 ]
Wang, Haiyan [3 ,4 ]
Lu, Zhonglin [3 ,5 ,6 ]
Wu, Tung-Hsin [7 ]
Lin, Ko-Han [8 ]
Mok, Greta S. P. [3 ,5 ,9 ]
机构
[1] Univ Macau, Fac Sci & Technol, Dept Elect & Comp Engn, Biomed Imaging Lab, Macau, Peoples R China
[2] Jiangsu Rayer Med Technol Co Ltd, Wuxi 214192, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Dept Elect & Comp Engn, Biomed Imaging Lab, Macau, Peoples R China
[4] Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, Shenzhen 518055, Peoples R China
[5] Univ Macau, Inst Collaborat Innovat, Ctr Cognit & Brain Sci, Macau, Peoples R China
[6] Univ Michigan, Dept Radiol, Div Nucl Med & Mol Imaging, Ann Arbor, MI 48109 USA
[7] Natl Yang Ming Chiao Tung Univ, Dept Biomed Imaging & Radiol Sci, Taipei 112304, Taiwan
[8] Taipei Vet Gen Hosp, Dept Nucl Med, Taipei 112027, Taiwan
[9] Univ Macau, Frontiers Sci Ctr Precis Oncol, Minist Educ, Macau, Peoples R China
关键词
Liver; Tumors; Image segmentation; Lungs; Biomedical imaging; Imaging; Training; Three-dimensional displays; Transformers; Single photon emission computed tomography; ConvNeXt; CT arterial portography (CTAP); CT hepatic arteriography (CTHA); image segmentation; Y-90 radioembolization (RE); MEDICAL IMAGE SEGMENTATION; CT;
D O I
10.1109/TRPMS.2024.3510587
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Y-90 radioembolization (RE) is an effective treatment for inoperable liver tumors. Pretreatment planning using Tc-99m-macroaggregated albumin (MAA) SPECT/CT requires segmentations of lung, normal liver and tumor, which could be delineated on low dose CT (LDCT), CT arterial portography (CTAP) and CT hepatic arteriography (CTHA). This study aims to develop a deep learning-based method for automatic lung, normal liver, and tumor segmentation for Y-90 RE treatment planning. Sixty-four sets of Tc-99m-MAA SPECT/CT, CTAP and CTHA images were retrospectively collected. Ground truth maps were provided by an experienced radiologist. We proposed ConvNeXt-2U, utilizing two U-Nets with connected skip connections and 3-D ConvNeXt blocks for joint segmentations. The LDCT, CTAP and CTHA were input to the two U-Nets. U-Net, attention U-Net, ResU-Net, MedNeXt, UNETR and Swin-UNETR were implemented for comparison. The segmentation performance was evaluated using Dice, Hausdorff distance (HD)95% and volume similarity (VS), and Y-90 RE dosimetrics, i.e., tumor-to-normal-liver ratio, lung-shunt fraction (LSF), absorbed dose (AD) of lungs, normal liver and tumors, and injected activity (IA). ConvNeXt-2U achieved the best performance in all segmentation indices and dosimetrics, except for HD95% of normal liver. It achieved mean Dice of 0.99, 0.93 and 0.77 in lungs, normal liver and tumors. ConvNeXt-2U provides a one-stop platform for unified segmentations for Y-90 RE treatment planning.
引用
收藏
页码:468 / 477
页数:10
相关论文
共 40 条
  • [1] Lung CT Image Segmentation Using Deep Neural Networks
    Ait Skourt, Brahim
    El Hassani, Abdelhamid
    Majda, Aicha
    [J]. PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017), 2018, 127 : 109 - 113
  • [2] The Liver Tumor Segmentation Benchmark (LiTS)
    Bilic, Patrick
    Christ, Patrick
    Li, Hongwei Bran
    Vorontsov, Eugene
    Ben-Cohen, Avi
    Kaissis, Georgios
    Szeskin, Adi
    Jacobs, Colin
    Mamani, Gabriel Efrain Humpire
    Chartrand, Gabriel
    Lohoefer, Fabian
    Holch, Julian Walter
    Sommer, Wieland
    Hofmann, Felix
    Hostettler, Alexandre
    Lev-Cohain, Naama
    Drozdzal, Michal
    Amitai, Michal Marianne
    Vivanti, Refael
    Sosna, Jacob
    Ezhov, Ivan
    Sekuboyina, Anjany
    Navarro, Fernando
    Kofler, Florian
    Paetzold, Johannes C.
    Shit, Suprosanna
    Hu, Xiaobin
    Lipkova, Jana
    Rempfler, Markus
    Piraud, Marie
    Kirschke, Jan
    Wiestler, Benedikt
    Zhang, Zhiheng
    Huelsemeyer, Christian
    Beetz, Marcel
    Ettlinger, Florian
    Antonelli, Michela
    Bae, Woong
    Bellver, Miriam
    Bi, Lei
    Chen, Hao
    Chlebus, Grzegorz
    Dam, Erik B.
    Dou, Qi
    Fu, Chi-Wing
    Georgescu, Bogdan
    Giro-I-Nieto, Xavier
    Gruen, Felix
    Han, Xu
    Heng, Pheng-Ann
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 84
  • [3] Bolch WE, 1999, J NUCL MED, V40, p11S
  • [4] Automated segmentation of lung, liver, and liver tumors from Tc-99m MAA SPECT/CT images for Y-90 radioembolization using convolutional neural networks
    Chaichana, Anucha
    Frey, Eric C.
    Teyateeti, Ajalaya
    Rhoongsittichai, Kijja
    Tocharoenchai, Chiraporn
    Pusuwan, Pawana
    Jangpatarapongsa, Kulachart
    [J]. MEDICAL PHYSICS, 2021, 48 (12) : 7877 - 7890
  • [5] Voxel-S-Value based 3D treatment planning methods for Y-90 microspheres radioembolization based on Tc-99m-macroaggregated albumin SPECT/CT
    Chen, Gefei
    Lu, Zhonglin
    Jiang, Han
    Lin, Ko-Han
    Mok, Greta S. P.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Consensus of Minimally Invasive and Multidisciplinary Comprehensive Treatment for Hepatocellular Carcinoma-2020 Guangzhou Recommendations
    Chen, Qi-Feng
    Li, Wang
    Yu, Simon Chun-Ho
    Chou, Yi-Hong
    Rhim, Hyunchul
    Yang, Xiaoming
    Shen, Lujun
    Dong, Annan
    Huang, Tao
    Huang, Jinhua
    Zhang, Fujun
    Fan, Weijun
    Zhao, Ming
    Gu, Yangkui
    Huang, Zhimei
    Zuo, Mengxuan
    Zhai, Bo
    Xiao, Yueyong
    Kuang, Ming
    Li, Jiaping
    Han, Jianjun
    Song, Wei
    Ma, Jie
    Wu, Peihong
    Oncology, Asia-Pacific Assoc Image-Guided Therapy
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [7] EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres
    Chiesa, Carlo
    Sjogreen-Gleisner, Katarina
    Walrand, Stephan
    Strigari, Lidia
    Flux, Glenn
    Gear, Jonathan
    Stokke, Caroline
    Gabina, Pablo Minguez
    Bernhardt, Peter
    Konijnenberg, Mark
    [J]. EJNMMI PHYSICS, 2021, 8 (01)
  • [8] Cordonnier JB, 2020, Arxiv, DOI [arXiv:1911.03584, 10.48550/arXiv.1911.03584]
  • [9] Intra- and inter-operator variability in MRI-based manual segmentation of HCC lesions and its impact on dosimetry
    Covert, Elise C.
    Fitzpatrick, Kellen
    Mikell, Justin
    Kaza, Ravi K.
    Millet, John D.
    Barkmeier, Daniel
    Gemmete, Joseph
    Christensen, Jared
    Schipper, Matthew J.
    Dewaraja, Yuni K.
    [J]. EJNMMI PHYSICS, 2022, 9 (01)
  • [10] Medical Image Segmentation based on U-Net: A Review
    Du, Getao
    Cao, Xu
    Liang, Jimin
    Chen, Xueli
    Zhan, Yonghua
    [J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2020, 64 (02)