On the Third Hankel Determinant of a Certain Subclass of Bi-Univalent Functions Defined by (p,q)-Derivative Operator

被引:2
作者
El-Ityan, Mohammad [1 ]
Shakir, Qasim Ali [2 ]
Al-Hawary, Tariq [3 ]
Buti, Rafid [4 ]
Breaz, Daniel [5 ]
Cotirla, Luminita-Ioana [6 ]
机构
[1] Al Balqa Appl Univ, Fac Sci, Dept Math, Salt 19117, Jordan
[2] Univ Al Qadisiyah, Coll Comp Sci & Informat Technol, Dept Math, Diwaniyah 58006, Iraq
[3] Al Balqa Appl Univ, Ajloun Coll, Dept Appl Sci, Ajloun 26816, Jordan
[4] Al Muthanna Univ, Coll Educ Pure Sci, Dept Math, Al Muthanna 66002, Iraq
[5] 1 Decembrie 1918 Univ Alba Iulia, Dept Math, Alba 510009, Romania
[6] Tech Univ Cluj Napoca, Dept Math, Cluj Napoca 400114, Romania
关键词
(p; q)-derivative operator; Fekete-Szeg & ouml; Hankel determinants; univalent; bi-univalent functions; COEFFICIENT;
D O I
10.3390/math13081269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, the generalized (p,q)-derivative operator is used to define a novel class of bi-univalent functions. For this class, we define constraints on the coefficients up to |& ell;5|. The functions are analyzed using a suitable operational method, which enables us to derive new bounds for the Fekete-Szeg & ouml; functional, as well as explicit estimates for important coefficients like |& ell;2| and |& ell;3|. In addition, we establish the upper bounds of the second and third Hankel determinants, providing insights into the geometrical and analytical properties of this class of functions.
引用
收藏
页数:14
相关论文
共 24 条
[1]  
Al-Hawary T., 2018, P INT C FRACT DIFF I
[2]   Coefficient Inequalities and Fekete-Szego-Type Problems for Family of Bi-Univalent Functions [J].
Al-Hawary, Tariq ;
Amourah, Ala ;
Almutairi, Hasan ;
Frasin, Basem .
SYMMETRY-BASEL, 2023, 15 (09)
[3]   A New Method for Estimating General Coefficients to Classes of Bi-univalent Functions [J].
Al-Refai, Oqlah ;
Amourah, Ala ;
Al-Hawary, Tariq ;
Frasin, Basem Aref .
JOURNAL OF FUNCTION SPACES, 2024, 2024
[4]   Construction of the second Hankel determinant for a new subclass of bi-univalent functions [J].
Altinkaya, Sahsene ;
Yalcin, Sibel .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) :2876-2884
[5]   Fibonacci Numbers Related to Some Subclasses of Bi-Univalent Functions [J].
Amourah, Ala ;
Frasin, Basem Aref ;
Salah, Jamal ;
Al-Hawary, Tariq .
INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2024, 2024
[6]   q-Fractional Calculus and Equations Preface [J].
Ismail, Mourad .
Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 :IX-+
[7]  
Araci S, 2016, J INEQUAL APPL, DOI 10.1186/s13660-016-1240-8
[8]  
Brannan D.A., 1980, Aspects of contemporary complex analysis
[9]  
Brannan D. A., 1986, Studia Universitatis Babes-Bolyai Mathematica, V31, P70, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
[10]  
Bulut S, 2017, COMMUN FAC SCI UNIV, V66, P108, DOI 10.1501/Commual_0000000780