Partitions into an exact number of partsPartitions into an exact number of partsC. Ballantine, M. Merca

被引:0
|
作者
Cristina Ballantine [1 ]
Mircea Merca [2 ]
机构
[1] College of The Holy Cross,Department of Mathematics and Computer Science
[2] National University of Science and Technology Politehnica Bucharest,Department of Mathematical Methods and Models, Fundamental Sciences Applied in Engineering Research Center
[3] Academy of Romanian Scientists,undefined
关键词
Partitions; Distinct partitions; Convolution identities; 11P81; 11P82; 05A19; 05A20;
D O I
10.1007/s11139-025-01109-3
中图分类号
学科分类号
摘要
In this paper, we examine the functions Pk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k(n)$$\end{document}, which counts the partitions of n into exactly k parts, and Qk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_k(n)$$\end{document}, which counts the partitions of n into exactly k distinct parts. These partition functions are closely linked to two classical identities of Euler. We explore this connection and establish several new relationships between Pk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k(n)$$\end{document} and Qk(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_k(n)$$\end{document}. We give both analytic and combinatorial proofs of the theorems.
引用
收藏
相关论文
共 2 条