Quantitative analysis of EXAFS data sets using deep reinforcement learning

被引:0
作者
Jeong, Eun-Suk [1 ,2 ]
Hwang, In-Hui [3 ]
Han, Sang-Wook [1 ,2 ]
机构
[1] Jeonbuk Natl Univ, Inst Fus Sci, Dept Phys Educ, Jeonju 54896, South Korea
[2] Jeonbuk Natl Univ, Inst Sci Educ, Jeonju 54896, South Korea
[3] POSTECH, Pohang Accelerator Lab, Pohang 37673, South Korea
基金
新加坡国家研究基金会;
关键词
Artificial intelligence; Reinforcement learning; Extended X-ray absorption fine structure; Machine learning; Local structural property; AI; SPECTROSCOPY; PACKAGE; IOT;
D O I
10.1038/s41598-025-94376-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extended X-ray absorption fine structure (EXAFS) serves as a unique tool for accurately characterizing the local structural properties surrounding specific atoms. However, the quantitative analysis of EXAFS data demands significant effort. Artificial intelligence (AI) techniques, including deep reinforcement learning (RL) methods, present a promising avenue for the rapid and precise analysis of EXAFS data sets. Unlike other AI approaches, a deep RL method utilizing reward values does not necessitate a large volume of pre-prepared data sets for training the neural networks of the AI system. We explored the application of a deep RL method for the quantitative analysis of EXAFS data sets, utilizing the reciprocal of the R-factor of a fit as the reward metric. The deep RL method effectively determined the local structural properties of PtOx and Zn-O complexes by fitting a series of EXAFS data sets to theoretical EXAFS calculations without imposing specific constraints. Looking ahead, AI has the potential to independently analyze any EXAFS data, although there are still challenges to overcome.
引用
收藏
页数:10
相关论文
共 33 条
[11]   Crystallization of Transition-Metal Oxides in Aqueous Solution beyond Ostwald Ripening [J].
Jeong, Eun-Suk ;
Hwang, In-Hui ;
Han, Sang-Wook .
LANGMUIR, 2020, 36 (35) :10565-10576
[12]   IoT and AI for Smart Government: A Research Agenda [J].
Kankanhalli, Atreyi ;
Charalabidis, Yannis ;
Mellouli, Sehl .
GOVERNMENT INFORMATION QUARTERLY, 2019, 36 (02) :304-309
[13]   Preparation of highly dispersive platinum catalysts impregnated on titania-incorporated silica support [J].
Kim, Mi-Young ;
You, Young San ;
Han, Hyun-Sik ;
Seo, Gon .
CATALYSIS LETTERS, 2008, 120 (1-2) :40-47
[14]   Coating SiO2 Support with TiO2 or ZrO2 and Effects on Structure and CO Oxidation Performance of Pt Catalysts [J].
Kim, Mi-Young ;
Choi, Jae-Soon ;
Toops, Todd J. ;
Jeong, Eun-Suk ;
Han, Sang-Wook ;
Schwartz, Viviane ;
Chen, Jihua .
CATALYSTS, 2013, 3 (01) :88-103
[15]   Human vs. AI: The battle for authenticity in fashion design and consumer response [J].
Lee, Garim ;
Kim, Hye-Young .
JOURNAL OF RETAILING AND CONSUMER SERVICES, 2024, 77
[16]  
Lillicrap T. P., 2015, arXiv
[17]   Revisiting the Extended X-ray Absorption Fine Structure Fitting Procedure through a Machine Learning-Based Approach [J].
Martini, A. ;
Bugaev, A. L. ;
Guda, S. A. ;
Guda, A. A. ;
Priola, E. ;
Borfecchia, E. ;
Smolders, S. ;
Janssens, K. ;
De Vos, D. ;
Soldatov, A., V .
JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (32) :7080-7091
[18]   IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry [J].
Misra, N. N. ;
Dixit, Yash ;
Al-Mallahi, Ahmad ;
Bhullar, Manreet Singh ;
Upadhyay, Rohit ;
Martynenko, Alex .
IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (09) :6305-6324
[19]  
Mnih V, 2013, Arxiv, DOI arXiv:1312.5602
[20]   EXAFS analysis using FEFF and FEFFIT [J].
Newville, M .
JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 :96-100