Quantitative analysis of EXAFS data sets using deep reinforcement learning

被引:0
作者
Jeong, Eun-Suk [1 ,2 ]
Hwang, In-Hui [3 ]
Han, Sang-Wook [1 ,2 ]
机构
[1] Jeonbuk Natl Univ, Inst Fus Sci, Dept Phys Educ, Jeonju 54896, South Korea
[2] Jeonbuk Natl Univ, Inst Sci Educ, Jeonju 54896, South Korea
[3] POSTECH, Pohang Accelerator Lab, Pohang 37673, South Korea
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
基金
新加坡国家研究基金会;
关键词
Artificial intelligence; Reinforcement learning; Extended X-ray absorption fine structure; Machine learning; Local structural property; AI; SPECTROSCOPY; PACKAGE; IOT;
D O I
10.1038/s41598-025-94376-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Extended X-ray absorption fine structure (EXAFS) serves as a unique tool for accurately characterizing the local structural properties surrounding specific atoms. However, the quantitative analysis of EXAFS data demands significant effort. Artificial intelligence (AI) techniques, including deep reinforcement learning (RL) methods, present a promising avenue for the rapid and precise analysis of EXAFS data sets. Unlike other AI approaches, a deep RL method utilizing reward values does not necessitate a large volume of pre-prepared data sets for training the neural networks of the AI system. We explored the application of a deep RL method for the quantitative analysis of EXAFS data sets, utilizing the reciprocal of the R-factor of a fit as the reward metric. The deep RL method effectively determined the local structural properties of PtOx and Zn-O complexes by fitting a series of EXAFS data sets to theoretical EXAFS calculations without imposing specific constraints. Looking ahead, AI has the potential to independently analyze any EXAFS data, although there are still challenges to overcome.
引用
收藏
页数:10
相关论文
共 33 条
[1]   Short-range compositional randomness of hydrogenated amorphous silicon-germanium films [J].
Chapman, BD ;
Han, SW ;
Seidler, GT ;
Stern, EA ;
Cohen, JD ;
Guha, S ;
Yang, J .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (02) :801-807
[2]   A New Subspace Clustering Strategy for AI-Based Data Analysis in IoT System [J].
Cui, Zhihua ;
Jing, Xuechun ;
Zhao, Peng ;
Zhang, Wensheng ;
Chen, Jinjun .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16) :12540-12549
[3]   XAFS SPECTROSCOPY OF LIQUID AND AMORPHOUS SYSTEMS - PRESENTATION AND VERIFICATION OF A NEWLY DEVELOPED PROGRAM PACKAGE [J].
ERTEL, TS ;
BERTAGNOLLI, H ;
HUCKMANN, S ;
KOLB, U ;
PETER, D .
APPLIED SPECTROSCOPY, 1992, 46 (04) :690-698
[4]   Solving the structure of nanoparticles by multiple-scattering EXAFS analysis [J].
Frenkel, AI .
JOURNAL OF SYNCHROTRON RADIATION, 1999, 6 :293-295
[5]   Lattice disorder and size-induced Kondo behavior in CeAl2 and CePt2+x [J].
Han, S. -W. ;
Booth, C. H. ;
Bauer, E. D. ;
Huang, P. H. ;
Chen, Y. Y. ;
Lawrence, J. M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (09)
[6]   DP4-AI automated NMR data analysis: straight from spectrometer to structure [J].
Howarth, Alexander ;
Ermanis, Kristaps ;
Goodman, Jonathan M. .
CHEMICAL SCIENCE, 2020, 11 (17) :4351-4359
[7]   AXEAP: a software package for X-ray emission data analysis using unsupervised machine learning [J].
Hwang, In Hui ;
Solovyev, Mikhail A. ;
Han, Sang Wook ;
Chan, Maria K. Y. ;
Hammonds, John P. ;
Heald, Steve M. ;
Kelly, Shelly D. ;
Schwarz, Nicholas ;
Zhang, Xiaoyi ;
Sun, Cheng Jun .
JOURNAL OF SYNCHROTRON RADIATION, 2022, 29 (Pt 5) :1309-1317
[8]   In-situ X-ray Absorption Fine Structure Study of TiO2 Nanoparticles under Ultraviolet Light [J].
Jeon, Jong-Sul ;
Kim, Byung-Hyuk ;
Park, Chang-In ;
Seo, Soo-Young ;
Kwak, Changha ;
Kim, Seon-Hyo ;
Han, Sang-Wook .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (03)
[9]   Temperature-Dependent Local Structural Properties of Redox Pt Nanoparticles on TiO2 and ZrO2 Supports [J].
Jeong, E-S ;
Park, C-I ;
Jin, Zhenlan ;
Hwang, I. -H. ;
Son, J. -K. ;
Kim, Mi-Young ;
Choi, Jae-Soon ;
Han, Sang-Wook .
CATALYSIS LETTERS, 2015, 145 (03) :971-983
[10]   Dispersion and stability mechanism of Pt nanoparticles on transition-metal oxides [J].
Jeong, Eun-Suk ;
Hwang, In-Hui ;
Han, Sang-Wook .
SCIENTIFIC REPORTS, 2022, 12 (01)