A Framework for Question Answering on Knowledge Graphs Using Large Language Models

被引:0
作者
Avila, Caio Viktor S. [1 ]
Casanova, Marco A. [2 ]
Vidal, Vania M. P. [1 ]
机构
[1] Univ Fed Ceara, BR-60440900 Fortaleza, Ceara, Brazil
[2] Pontifical Catholic Univ Rio de Janeiro, Dept Informat, BR-22451900 Rio De Janeiro, Brazil
来源
SEMANTIC WEB: ESWC 2024 SATELLITE EVENTS, PT I | 2025年 / 15344卷
关键词
Question Answering; Knowledge Graph; Large Language Model;
D O I
10.1007/978-3-031-78952-6_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, large language models (LLMs) are the state of the art for pre-trained language models. LLMs have been applied to many tasks, including question and answering over Knowledge Graphs (KGs) and text-to-SPARQL, that is, the translation of Natural Language (NL) questions to SPARQL queries. This paper introduces Auto-KGQA, an autonomous domain-independent framework based on LLMs for text-to-SPARQL. The framework uses as context, fragments of the KG, which the LLM uses to translate the user's NL question to a SPARQL query on the KG. Finally, it generates a natural language response for the user, based upon the result of the execution of SPARQL query over the KG.
引用
收藏
页码:168 / 172
页数:5
相关论文
共 9 条
[1]   Experiments with text-to-SPARQL based on ChatGPT [J].
Avila, Caio Viktor S. ;
Vidal, Vania M. P. ;
Franco, Wellington ;
Casanova, Marco A. .
18TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC 2024, 2024, :277-284
[2]  
Brown Tom B, 2020, NeurIPS, V1, P2
[3]  
Dong QX, 2024, Arxiv, DOI arXiv:2301.00234
[4]  
Feng C, 2023, Arxiv, DOI [arXiv:2309.03118, DOI 10.48550/ARXIV.2309.03118, 10.48550/arXiv.2309.03118]
[5]  
Hirschman L., 2001, Natural Language Engineering, V7, P275, DOI 10.1017/S1351324901002807
[6]  
Kovriguina L., 2023, CEUR WORKSHOP P, V3526
[7]   SGPT: A Generative Approach for SPARQL Query Generation From Natural Language Questions [J].
Rony, Md Rashad Al Hasan ;
Kumar, Uttam ;
Teucher, Roman ;
Kovriguina, Liubov ;
Lehmann, Jens .
IEEE ACCESS, 2022, 10 :70712-70723
[8]   Can ChatGPT Replace Traditional KBQA Models? An In-Depth Analysis of the Question Answering Performance of the GPT LLM Family [J].
Tan, Yiming ;
Min, Dehai ;
Li, Yu ;
Li, Wenbo ;
Hu, Nan ;
Chen, Yongrui ;
Qi, Guilin .
SEMANTIC WEB, ISWC 2023, PART I, 2023, 14265 :348-367
[9]   Challenges, Techniques, and Trends of Simple Knowledge Graph Question Answering: A Survey [J].
Yani, Mohammad ;
Krisnadhi, Adila Alfa .
INFORMATION, 2021, 12 (07)