Engineering the optoelectronic properties of semiconductor quantum dots via quantum cutting and quantum entanglement for optoelectronic devices

被引:0
作者
Nisar Ali [1 ]
Hanane At Lahoussine Ouali [1 ]
Otman Abida [1 ]
Mohamed Essalhi [1 ]
Bakhtiar Ul Haq [2 ]
机构
[1] African Sustainable Agriculture Research Institute (ASARI) Mohammad VI Polytechnic University (UM6P),Faculty of Science Education
[2] Jeju National University,undefined
关键词
Quantum cutting; Optoelectronic devices; Efficiency; Quantum dots; Rare Earth ions; Multiple exciton;
D O I
10.1007/s11082-025-08257-2
中图分类号
学科分类号
摘要
For optimized optoelectronic devices, appropriate photon management is required such that full energy spectrum of the photons are properly captured. In conventional solar cells and photoelectrolytic devices, the electron hole-pair is generated by the incoming photon with energy above a certain threshold. The excess energy being lost to heat as thermalization thus reduces the overall performance of the device. To circumvent the situation, space separated quantum cutting process is used in which a high energy photon can be split into two low energy photons compatible with the environment for exciton generation. Such photon engineering can effectively increase the overall efficiency of photovoltaic devices. In this review, we demonstrate photon splitting via quantum cutting (QC) by semiconductor nanocrystals, where the resonance created in the coupled quantum dots causes quantum entanglement and hence downconversion mechanism.
引用
收藏
相关论文
共 50 条
  • [21] Modeling the evolution of quantum optical states in optoelectronic devices
    Hayrynen, Teppo
    Oksanen, Jani
    Tulkki, Jukka
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XIX, 2011, 7933
  • [22] Studying the influence of substrate conductivity on the optoelectronic properties of quantum dots langmuir monolayer
    Al-Alwani, Ammar J.
    Chumakov, A. S.
    Begletsova, N. N.
    Shinkarenko, O. A.
    Markin, A. V.
    Gorbachev, I. A.
    Bratashov, D. N.
    Gavrikov, M. V.
    Venig, S. B.
    Glukhovskoy, E. G.
    MATERIALS RESEARCH EXPRESS, 2018, 5 (04):
  • [23] Ligand-customized colloidal quantum dots for high-performance optoelectronic devices
    Xia, Hang
    Hu, Huicheng
    Wang, Ya
    Yu, Mengxuan
    Yuan, Mohan
    Yang, Ji
    Gao, Liang
    Zhang, Jianbing
    Tang, Jiang
    Lan, Xinzheng
    JOURNAL OF MATERIALS CHEMISTRY C, 2024, 12 (29) : 10919 - 10928
  • [24] Polarization insensitive quantum well optoelectronic devices using quantum well shape modification
    Koteles, ES
    He, JJ
    Charbonneau, S
    Poole, PJ
    Aers, GC
    Feng, Y
    Goldberg, RD
    Mitchell, IV
    EMERGING COMPONENTS AND TECHNOLOGIES FOR ALL-OPTICAL PHOTONIC SYSTEMS II, 1997, 2918 : 184 - 192
  • [25] Optoelectronic Characteristics of ZnS Quantum Dots: Simulation and Experimental Investigations
    Al-Sagheer, Fakhreia
    Bumajdad, Ali
    Madkour, Metwally
    Ghazal, Basma
    SCIENCE OF ADVANCED MATERIALS, 2015, 7 (11) : 2352 - 2360
  • [26] Self-assembled quantum dots on GaAs for optoelectronic applications
    Henini, M
    MICROELECTRONICS JOURNAL, 2003, 34 (5-8) : 333 - 336
  • [27] Core-Shell CsPbBr3@CdS Quantum Dots with Enhanced Stability and Photoluminescence Quantum Yields for Optoelectronic Devices
    Shi, Jindou
    Ge, Wanyin
    Zhu, Jianfeng
    Saruyama, Masaki
    Teranishi, Toshiharu
    ACS APPLIED NANO MATERIALS, 2020, 3 (08) : 7563 - 7571
  • [28] Quantum features of semiconductor quantum dots
    Lozada-Cassou, M
    Dong, SH
    Yu, J
    PHYSICS LETTERS A, 2004, 331 (1-2) : 45 - 52
  • [29] Semiconductor nanostructures engineering: Pyramidal quantum dots
    Pelucchi, E.
    Dimastrodonato, V.
    Mereni, L. O.
    Juska, G.
    Gocalinska, A.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (02) : 45 - 51
  • [30] Dual-function optoelectronic devices fabricated using ZnO quantum dots and polymer composites
    Shim, Jae Ho
    Lee, Kyu Seung
    Son, Dong Ick
    MATERIALS LETTERS, 2017, 191 : 136 - 140