The pore-fracture structure of ultra-deep coal is critical for evaluating resource potential and guiding the exploration and development of deep coalbed methane (CBM). In this study, a coal sample was obtained from the Gaogu-4 well at a depth of 4369.4 m in the Shengli Oilfield of Shandong, China. A comprehensive suite of characterization techniques, including Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD), Mercury Intrusion Porosimetry (MIP), Low-temperature Nitrogen Adsorption (LT-N2GA), and Low-pressure CO2 Adsorption (LP-CO2GA), were employed to investigate the surface morphology, mineral composition, and multi-scale pore-fracture characteristics of the ultra-deep coal. Based on fractal geometry theory, four fractal dimension models were established, and the pore structure parameters were then used to calculate the fractal dimensions of the coal sample. The results show that the ultra-deep coal surface is relatively rough, with prominent fractures and limited pore presence as observed under FE-SEM. Energy Dispersive Spectrometer (EDS) analysis identified the elements such as C, O, Al, Si, S, and Fe, thus suggesting that the coal sample contains silicate and iron sulfide minerals. XRD analysis shows that the coal sample contains kaolinite, marcasite, and clinochlore. The multi-scale pore-fracture structure characteristics indicate that the ultra-deep coal is predominantly composed of micropores, followed by mesopores. Macropores are the least abundant, yet they contribute the most to pore volume (PV), accounting for 70.9%. The specific surface area (SSA) of micropores occupies an absolute advantage, accounting for up to 97.46%. Based on the fractal model, the fractal dimension of the coal surface is 1.4372, while the fractal dimensions of the micropores, mesopores, and macropores are 2.5424, 2.5917, and 2.5038, respectively. These results indicate that the surface morphology and pore-fracture distribution of the ultra-deep coal are non-uniform and exhibit statistical fractal characteristics. The pore-fracture structure dominated by micropores in ultra-deep coal seams provides numerous adsorption sites for CBM, thereby controlling the adsorption capacity and development potential of deep CBM.