Theoretical investigation of the scaling behavior of doped edge states in zigzag graphene nanoribbons

被引:0
作者
Cavalcante, Carlos R. M. [1 ,2 ]
Guerra, Thiago [3 ]
Azevedo, Sergio [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, Caixa Postal 5008, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Inst Fed Rio Grande do Norte, BR-59500000 Mossoro, RN, Brazil
[3] Univ Fed Rural Semi Arido, Dept Ciencia & Tecnol, BR-59780000 Caraubas, RN, Brazil
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2025年 / 131卷 / 07期
关键词
ZGNRs; Edge states; Edge doping; Spin polarization; EXCHANGE; ORDER;
D O I
10.1007/s00339-025-08659-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Spin-polarized edge states of zigzag graphene nanoribbons (ZGNRs), specially those modified by doping, offer potential for spintronic applications. This work employs density functional theory to investigate the effects of nitrogen (N) and boron (B) doping on the electronic and spin properties of ZGNRs, with a particular focus on how these properties vary with ribbon width. Our results suggest that N-n-ZGNRs exhibit similar structural stability across a range of widths, whereas B-n-ZGNRs are more sensitive to width changes, leading to increased formation energies and lattice distortions. In N-n- ZGNRs, spin polarization remains robust and extends along the ribbon edges, whereas in B-n-ZGNRs, spin localization is confined to the vicinity of the dopant atoms. Furthermore, N-doping induces a more significant reduction in the energy gap as the ribbon width increases than B-doping does. These findings provide some insights into the tunability of the electronic and spin properties of ZGNRs through selective doping, which is highly important for the development of spintronic and nanoelectronic devices.
引用
收藏
页数:8
相关论文
共 38 条
[1]   Organometallic Complexes of Graphene: Toward Atomic Spintronics Using a Graphene Web [J].
Avdoshenko, Stas M. ;
Ioffe, Ilya N. ;
Cuniberti, Gianaurelio ;
Dunsch, Lothar ;
Popov, Alexey A. .
ACS NANO, 2011, 5 (12) :9939-9949
[2]   Spin splitting of dopant edge state in magnetic zigzag graphene nanoribbons [J].
Blackwell, Raymond E. ;
Zhao, Fangzhou ;
Brooks, Erin ;
Zhu, Junmian ;
Piskun, Ilya ;
Wang, Shenkai ;
Delgado, Aidan ;
Lee, Yea-Lee ;
Louie, Steven G. ;
Fischer, Felix R. .
NATURE, 2021, 600 (7890) :647-+
[3]   Detecting the spin-polarization of edge states in graphene nanoribbons [J].
Brede, Jens ;
Merino-Diez, Nestor ;
Berdonces-Layunta, Alejandro ;
Sanz, Sofia ;
Dominguez-Celorrio, Amelia ;
Lobo-Checa, Jorge ;
Vilas-Varela, Manuel ;
Pena, Diego ;
Frederiksen, Thomas ;
Pascual, Jose I. ;
de Oteyza, Dimas G. ;
Serrate, David .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]  
Das S.R., 2021, Edge State Induced Spintronic Properties of Graphene Nanoribbons: A Theoretical Perspective, P165, DOI [10.1007/978-981-16-1052-38, DOI 10.1007/978-981-16-1052-38]
[5]   Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions [J].
Dutta, Sudipta ;
Pati, Swapan K. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (05) :1333-1335
[6]   A first-principle study of a- and y-graphyne and its BN and BC2N analogs [J].
Guerra, T. ;
Pontes, J. M. ;
Gomes, D. S. ;
Azevedo, S. ;
Pinto, A. K. M. ;
Machado, Leonardo D. .
COMPUTATIONAL MATERIALS SCIENCE, 2024, 234
[7]   Controllable N-Doping of Graphene [J].
Guo, Beidou ;
Liu, Qian ;
Chen, Erdan ;
Zhu, Hewei ;
Fang, Liang ;
Gong, Jian Ru .
NANO LETTERS, 2010, 10 (12) :4975-4980
[8]  
Han W, 2014, NAT NANOTECHNOL, V9, P794, DOI [10.1038/nnano.2014.214, 10.1038/NNANO.2014.214]
[9]  
Janavika K.M., 2023, Mater. Today Proc., DOI [10.1016/j.matpr.2023.05.446, DOI 10.1016/J.MATPR.2023.05.446]
[10]   Coulomb edge effects in graphene nanoribbons [J].
Jaskolski, W. ;
Ayuela, A. .
SOLID STATE COMMUNICATIONS, 2014, 196 :1-7